ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of Neptunes 2017 Bright Equatorial Storm

59   0   0.0 ( 0 )
 نشر من قبل Edward Molter
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a large ($sim$8500 km diameter) infrared-bright storm at Neptunes equator in June 2017. We tracked the storm over a period of 7 months with high-cadence infrared snapshot imaging, carried out on 14 nights at the 10 meter Keck II telescope and 17 nights at the Shane 120 inch reflector at Lick Observatory. The cloud feature was larger and more persistent than any equatorial clouds seen before on Neptune, remaining intermittently active from at least 10 June to 31 December 2017. Our Keck and Lick observations were augmented by very high-cadence images from the amateur community, which permitted the determination of accurate drift rates for the cloud feature. Its zonal drift speed was variable from 10 June to at least 25 July, but remained a constant $237.4 pm 0.2$ m s$^{-1}$ from 30 September until at least 15 November. The pressure of the cloud top was determined from radiative transfer calculations to be 0.3-0.6 bar; this value remained constant over the course of the observations. Multiple cloud break-up events, in which a bright cloud band wrapped around Neptunes equator, were observed over the course of our observations. No dark spot vortices were seen near the equator in HST imaging on 6 and 7 October. The size and pressure of the storm are consistent with moist convection or a planetary-scale wave as the energy source of convective upwelling, but more modeling is required to determine the driver of this equatorial disturbance as well as the triggers for and dynamics of the observed cloud break-up events.



قيم البحث

اقرأ أيضاً

Observations of planets throughout our Solar System have revealed that the Earth is not alone in possessing natural, inter-annual atmospheric cycles. The equatorial middle atmospheres of the Earth, Jupiter and Saturn all exhibit a remarkably similar phenomenon - a vertical, cyclic pattern of alternating temperatures and zonal (east-west) wind regimes that propagate slowly downwards with a well-defined multi-Earth-year period. Earths Quasi-Biennial Oscillation (QBO, observed in the lower stratospheres with an average period of 28 months) is one of the most regular, repeatable cycles exhibited by our climate system, and yet recent work has shown that this regularity can be disrupted by events occurring far away from the equatorial region, an example of a phenomenon known as atmospheric teleconnection. Here we reveal that Saturns equatorial Quasi-Periodic Oscillation (QPO, with a ~15-year period) can also be dramatically perturbed. An intense springtime storm erupted at Saturns northern mid-latitudes in December 2010, spawning a gigantic hot vortex in the stratosphere at $40^circ$N that persisted for 3 years. Far from the storm, the Cassini temperature measurements showed a dramatic $sim10$-K cooling in the 0.5-5 mbar range across the entire equatorial region, disrupting the regular QPO pattern and significantly altering the middle-atmospheric wind structure, suggesting an injection of westward momentum into the equatorial wind system from waves generated by the northern storm. Hence, as on Earth, meteorological activity at mid-latitudes can have a profound effect on the regular atmospheric cycles in the tropics, demonstrating that waves can provide horizontal teleconnections between the phenomena shaping the middle atmospheres of giant planets.
The majority of exoplanets found to date have been discovered via the transit method, and transmission spectroscopy represents the primary method of studying these distant worlds. Currently, in-depth atmospheric characterization of transiting exoplan ets entails the use of spectrographs on large telescopes, requiring significant observing time to study each planet. Previous studies have demonstrated trends for solar system worlds using color-color photometry of reflectance spectra, as well as trends within transmission spectra for hot Jupiters. Building on these concepts, we have investigated the use of transmission color photometric analysis for efficient, coarse categorization of exoplanets and for assessing the nature of these worlds, with a focus on resolving the bulk composition degeneracy to aid in discriminating super-Earths and sub-Neptunes. We present our methodology and first results, including spectrum models, model comparison frameworks, and wave band selection criteria. We present our results for different transmission color metrics, filter selection methods, and numbers of filters. Assuming noise-free spectra of isothermal atmospheres in chemical equilibrium, with our pipeline, we are able to constrain atmospheric mean molecular weight in order to distinguish between super-Earth and sub-Neptune atmospheres with >90$%$ overall accuracy using as few as two specific low-resolution filter combinations. We also found that increasing the number of filters does not substantially impact this performance. This method could allow for broad characterization of large numbers of planets much more efficiently than current methods permit, enabling population and system-level studies. Additionally, data collected via this method could inform follow-up observing time by large telescopes for more detailed studies of worlds of interest.
We report the discovery and validation of four extrasolar planets hosted by the nearby, bright, Sun-like (G3V) star HD~108236 using data from the Transiting Exoplanet Survey Satellite (TESS). We present transit photometry, reconnaissance and precise Doppler spectroscopy as well as high-resolution imaging, to validate the planetary nature of the objects transiting HD~108236, also known as the TESS Object of Interest (TOI) 1233. The innermost planet is a possibly-rocky super-Earth with a period of $3.79523_{-0.00044}^{+0.00047}$ days and has a radius of $1.586pm0.098$ $R_oplus$. The outer planets are sub-Neptunes, with potential gaseous envelopes, having radii of $2.068_{-0.091}^{+0.10}$ $R_oplus$, $2.72pm0.11$ $R_oplus$, and $3.12_{-0.12}^{+0.13}$ $R_oplus$ and periods of $6.20370_{-0.00052}^{+0.00064}$ days, $14.17555_{-0.0011}^{+0.00099}$ days, and $19.5917_{-0.0020}^{+0.0022}$ days, respectively. With V and K$_{rm s}$ magnitudes of 9.2 and 7.6, respectively, the bright host star makes the transiting planets favorable targets for mass measurements and, potentially, for atmospheric characterization via transmission spectroscopy. HD~108236 is the brightest Sun-like star in the visual (V) band known to host four or more transiting exoplanets. The discovered planets span a broad range of planetary radii and equilibrium temperatures, and share a common history of insolation from a Sun-like star ($R_star = 0.888 pm 0.017$ R$_odot$, $T_{rm eff} = 5730 pm 50$ K), making HD 108236 an exciting, opportune cosmic laboratory for testing models of planet formation and evolution.
In this catalog we compile information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) as well as all other bright ($m_{peak}leq17$), spectroscopically confirmed supernovae found in 2017, totaling 308 supernovae . We also present UV through near-IR magnitudes gathered from public databases of all host galaxies for the supernovae in the sample. We perform statistical analyses of our full bright supernova sample, which now contains 949 supernovae discovered since 2014 May 1, including supernovae from our previous catalogs. This is the fourth of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team, and this work presents updated data and measurements, including light curves, redshifts, classifications, and host galaxy identifications, that supersede information contained in any previous publications.
We report the discovery and characterization of two transiting planets around the bright M1 V star LP 961-53 (TOI-776, J = 8.5 mag, M = 0.54+-0.03 Msun) detected during Sector 10 observations of the Transiting Exoplanet Survey Satellite (TESS). Combi ning the TESS photometry with HARPS radial velocities, as well as ground-based follow-up transit observations from MEarth and LCOGT telescopes, we measured for the inner planet, TOI-776 b, a period of 8.25 d, a radius of 1.85+-0.13 Re, and a mass of 4.0+-0.9 Me; and for the outer planet, TOI-776 c, a period of 15.66 d, a radius of 2.02+-0.14 Re, and a mass of 5.3+-1.8 Me. The Doppler data shows one additional signal, with a period of 34 d, associated with the rotational period of the star. The analysis of fifteen years of ground-based photometric monitoring data and the inspection of different spectral line indicators confirm this assumption. The bulk densities of TOI-776 b and c allow for a wide range of possible interior and atmospheric compositions. However, both planets have retained a significant atmosphere, with slightly different envelope mass fractions. Thanks to their location near the radius gap for M dwarfs, we can start to explore the mechanism(s) responsible for the radius valley emergence around low-mass stars as compared to solar-like stars. While a larger sample of well-characterized planets in this parameter space is still needed to draw firm conclusions, we tentatively estimate that the stellar mass below which thermally-driven mass loss is no longer the main formation pathway for sculpting the radius valley is between 0.63 and 0.54 Msun. Due to the brightness of the star, the TOI-776 system is also an excellent target for the James Webb Space Telescope, providing a remarkable laboratory to break the degeneracy in planetary interior models and to test formation and evolution theories of small planets around low-mass stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا