ترغب بنشر مسار تعليمي؟ اضغط هنا

Perfect discrimination of non-orthogonal quantum states with posterior classical partial information

67   0   0.0 ( 0 )
 نشر من قبل Seiseki Akibue
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The indistinguishability of non-orthogonal pure states lies at the heart of quantum information processing. Although the indistinguishability reflects the impossibility of measuring complementary physical quantities by a single measurement, we demonstrate that the distinguishability can be perfectly retrieved simply with the help of posterior classical partial information. We demonstrate this by showing an ensemble of non-orthogonal pure states such that a state randomly sampled from the ensemble can be perfectly identified by a single measurement with help of the post-processing of the measurement outcomes and additional partial information about the sampled state, i.e., the label of subensemble from which the state is sampled. When an ensemble consists of two subensembles, we show that the perfect distinguishability of the ensemble with the help of the post-processing can be restated as a matrix-decomposition problem. Furthermore, we give the analytical solution for the problem when both subensembles consist of two states.



قيم البحث

اقرأ أيضاً

Many quantum statistical models are most conveniently formulated in terms of non-orthonormal bases. This is the case, for example, when mixtures and superpositions of coherent states are involved. In these instances, we show that the analytical evalu ation of the quantum Fisher information may be greatly simplified by bypassing both the diagonalization of the density matrix and the orthogonalization of the basis. The key ingredient in our method is the Gramian matrix (i.e. the matrix of scalar products between basis elements), which may be interpreted as a metric tensor for index contraction. As an application, we derive novel analytical results for several estimation problems involving noisy Schroedinger cat states.
For an even qudit dimension $dgeq 2,$ we introduce a class of two-qudit states exhibiting perfect correlations/anticorrelations and prove via the generalized Gell-Mann representation that, for each two-qudit state from this class, the maximal violati on of the original Bell inequality is bounded from above by the value $3/2$ - the upper bound attained on some two-qubit states. We show that the two-qudit Greenberger-Horne-Zeilinger (GHZ) state with an arbitrary even $dgeq 2$ exhibits perfect correlations/anticorrelations and belongs to the introduced two-qudit state class. These new results are important steps towards proving in general the $frac{3}{2}$ upper bound on quantum violation of the original Bell inequality. The latter would imply that similarly as the Tsirelson upper bound $2sqrt{2}$ specifies the quantum analog of the CHSH inequality for all bipartite quantum states, the upper bound $frac{3}{2}$ specifies the quantum analog of the original Bell inequality for all bipartite quantum states with perfect correlations/ anticorrelations. Possible consequences for the experimental tests on violation of the original Bell inequality are briefly discussed.
Quantum walks have by now been realized in a large variety of different physical settings. In some of these, particularly with trapped ions, the walk is implemented in phase space, where the corresponding position states are not orthogonal. We develo p a general description of such a quantum walk and show how to map it into a standard one with orthogonal states, thereby making available all the tools developed for the latter. This enables a variety of experiments, which can be implemented with smaller step sizes and more steps. Tuning the non-orthogonality allows for an easy preparation of extended states such as momentum eigenstates, which travel at a well-defined speed with low dispersion. We introduce a method to adjust their velocity by momentum shifts, which allows to investigate intriguing effects such as the analog of Bloch oscillations.
447 - T. Douce , A. Ketterer , A. Keller 2014
We propose a classical to quantum information encoding system using non--orthogonal states and apply it to the problem of searching an element in a quantum list. We show that the proposed encoding scheme leads to an exponential gain in terms of quant um resources and, in some cases, to an exponential gain in the number of runs of the protocol. In the case where the output of the search algorithm is a quantum state with some particular physical property, the searched state is found with a single query to the introduced oracle. If the obtained quantum state must be converted back to classical information, our protocol demands a number of repetitions that scales polynomially with the number of qubits required to encode a classical string.
The principle of superposition is an intriguing feature of Quantum Mechanics, which is regularly exploited at various instances. A recent work [PRL textbf{116}, 110403 (2016)] shows that the fundamentals of Quantum Mechanics restrict the superpositio n of two arbitrary pure states of a quantum system, even though it is possible to superpose two quantum states with partial prior knowledge. The prior knowledge imposes geometrical constraints on the choice of input pure states. We discuss an experimentally feasible protocol to superpose multiple pure states of a $d$ dimensional quantum system and carry out an explicit experimental realization to superpose two single-qubit pure states on a two-qubit NMR quantum information processor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا