ﻻ يوجد ملخص باللغة العربية
The indistinguishability of non-orthogonal pure states lies at the heart of quantum information processing. Although the indistinguishability reflects the impossibility of measuring complementary physical quantities by a single measurement, we demonstrate that the distinguishability can be perfectly retrieved simply with the help of posterior classical partial information. We demonstrate this by showing an ensemble of non-orthogonal pure states such that a state randomly sampled from the ensemble can be perfectly identified by a single measurement with help of the post-processing of the measurement outcomes and additional partial information about the sampled state, i.e., the label of subensemble from which the state is sampled. When an ensemble consists of two subensembles, we show that the perfect distinguishability of the ensemble with the help of the post-processing can be restated as a matrix-decomposition problem. Furthermore, we give the analytical solution for the problem when both subensembles consist of two states.
Many quantum statistical models are most conveniently formulated in terms of non-orthonormal bases. This is the case, for example, when mixtures and superpositions of coherent states are involved. In these instances, we show that the analytical evalu
For an even qudit dimension $dgeq 2,$ we introduce a class of two-qudit states exhibiting perfect correlations/anticorrelations and prove via the generalized Gell-Mann representation that, for each two-qudit state from this class, the maximal violati
Quantum walks have by now been realized in a large variety of different physical settings. In some of these, particularly with trapped ions, the walk is implemented in phase space, where the corresponding position states are not orthogonal. We develo
We propose a classical to quantum information encoding system using non--orthogonal states and apply it to the problem of searching an element in a quantum list. We show that the proposed encoding scheme leads to an exponential gain in terms of quant
The principle of superposition is an intriguing feature of Quantum Mechanics, which is regularly exploited at various instances. A recent work [PRL textbf{116}, 110403 (2016)] shows that the fundamentals of Quantum Mechanics restrict the superpositio