ﻻ يوجد ملخص باللغة العربية
Improving patient care safety is an ultimate objective for medical cyber-physical systems. A recent study shows that the patients death rate is significantly reduced by computerizing medical best practice guidelines. Recent data also show that some morbidity and mortality in emergency care are directly caused by delayed or interrupted treatment due to lack of medical resources. However, medical guidelines usually do not provide guidance on medical resource demands and how to manage potential unexpected delays in resource availability. If medical resources are temporarily unavailable, safety properties in existing executable medical guideline models may fail which may cause increased risk to patients under care. The paper presents a separately model and jointly verify (SMJV) architecture to separately model medical resource available times and relationships and jointly verify safety properties of existing medical best practice guideline models with resource models being integrated in. The SMJV architecture allows medical staff to effectively manage medical resource demands and unexpected resource availability delays during emergency care. The separated modeling approach also allows different domain professionals to make independent model modifications, facilitates the management of frequent resource availability changes, and enables resource statechart reuse in multiple medical guideline models. A simplified stroke scenario is used as a case study to investigate the effectiveness and validity of the SMJV architecture. The case study indicates that the SMJV architecture is able to identify unsafe properties caused by unexpected resource delays.
Improving effectiveness and safety of patient care is an ultimate objective for medical cyber-physical systems. A recent study shows that the patients death rate can be reduced by computerizing medical guidelines. Most existing medical guideline mode
Improving patient care safety is an ultimate objective for medical cyber-physical systems. A recent study shows that the patients death rate can be significantly reduced by computerizing medical best practice guidelines. To facilitate the development
Improving the effectiveness and safety of patient care is the ultimate objective for medical cyber-physical systems. Many medical best practice guidelines exist, but most of the existing guidelines in handbooks are difficult for medical staff to reme
Context: Software Architecture (SA) and Source Code (SC) are two intertwined artefacts that represent the interdependent design decisions made at different levels of abstractions - High-Level (HL) and Low-Level (LL). An understanding of the relations
Medical Dialogue Generation (MDG) is intended to build a medical dialogue system for intelligent consultation, which can communicate with patients in real-time, thereby improving the efficiency of clinical diagnosis with broad application prospects.