ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast Structural Dynamics of Photo-Reactions Revealed by Model-Independent X-ray Cross-Correlation Analysis

68   0   0.0 ( 0 )
 نشر من قبل Ivan Vartanyants
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We applied angular X-ray Cross-Correlation analysis (XCCA) to scattering images from a femtosecond resolution LCLS X-ray free-electron laser (XFEL) pump-probe experiment with solvated PtPOP ([Pt$_2$(P$_2$O$_5$H$_2$)$_4$]$^{4-}$) metal complex molecules. The molecules were pumped with linear polarized laser pulses creating an excited state population with a preferred orientational (alignment) direction. Two time scales of $1.9pm1.5$ ps and $46pm10$ ps were revealed by model-independent XCCA, associated with an internal structural changes and rotational dephasing, respectively. Our studies illustrate the potential of XCCA to reveal hidden structural information in a model independent analysis of time evolution of solvated metal complex molecules.

قيم البحث

اقرأ أيضاً

We report experimental results on the diffractive imaging of three-dimensionally aligned 2,5-diiodothiophene molecules. The molecules were aligned by chirped near-infrared laser pulses, and their structure was probed at a photon energy of 9.5 keV ($l ambdaapprox130 text{pm}$) provided by the Linac Coherent Light Source. Diffracted photons were recorded on the CSPAD detector and a two-dimensional diffraction pattern of the equilibrium structure of 2,5-diiodothiophene was recorded. The retrieved distance between the two iodine atoms agrees with the quantum-chemically calculated molecular structure to within 5 %. The experimental approach allows for the imaging of intrinsic molecular dynamics in the molecular frame, albeit this requires more experimental data which should be readily available at upcoming high-repetition-rate facilities.
In single particle coherent x-ray diffraction imaging experiments, performed at x-ray free-electron lasers (XFELs), samples are exposed to intense x-ray pulses to obtain single-shot diffraction patterns. The high intensity induces electronic dynamics on the femtosecond time scale in the system, which can reduce the contrast of the obtained diffraction patterns and adds an isotropic background. We quantify the degradation of the diffraction pattern from ultrafast electronic damage by performing simulations on a biological sample exposed to x-ray pulses with different parameters. We find that the contrast is substantially reduced and the background is considerably strong only if almost all electrons are removed from their parent atoms. This happens at fluences of at least one order of magnitude larger than provided at currently available XFEL sources.
In the present work, we investigate the ionization of molecules of biological interest by the impact of multicharged ions in the intermediate to high energy range. We performed full non-perturbative distorted-wave calculations (CDW) for thirty-six co llisional systems composed by six atomic targets: H, C, N, O, F, and S -which are the constituents of most of the DNA and biological molecules- and six charged projectiles (antiprotons, H, He, B, C, and O). On account of the radiation damage caused by secondary electrons, we inspect the energy and angular distributions of the emitted electrons from the atomic targets. We examine seventeen molecules: DNA and RNA bases, DNA backbone, pyrimidines, tetrahydrofuran (THF), and C n H n compounds. We show that the simple stoichiometric model (SSM), which approximates the molecular ionization cross sections as a linear combination of the atomic ones, gives reasonably good results for complex molecules. We also inspect the extensively used Toburen scaling of the total ionization cross sections of molecules with the number of weakly bound electrons. Based on the atomic CDW results, we propose new active electron numbers, which leads to a better universal scaling for all the targets and ions studied here in the intermediate to the high energy region. The new scaling describes well the available experimental data for proton impact, including small molecules. We perform full molecular calculations for five nucleobases and test a modified stoichiometric formula based on the Mulliken charge of the composite atoms. The difference introduced by the new stoichiometric formula is less than 3%, which indicates the reliability of the SSM to deal with this type of molecules. The results of the extensive ion-target examination included in the present study allow us to assert that the SSM and the CDW-based scaling will be useful tools in this area.
Electron relaxation is studied in endofullerene Mg@C60, after an initial localized photoexcitation in Mg, by nonadiabtic molecular dynamics simulations. To ensure reliability, two methods are used: i) an independent particle approach with a DFT descr iption of the ground state and ii) HF ground state with many-body effects for the excited state dynamics. Both methods exhibit similar relaxation times leading to an ultrafast decay and charge transfer from Mg to C60 within tens of femtoseconds. Method (i) further elicits a robust transient-trap of the transferred electron that can delay the electron-hole recombination. Results shall motivate experiments to probe these ultrafast processes by two-photon transient absorption spectroscopy in gas phase, in solution, or as thin films.
The structural properties of the uranium-encapsulated nano-cage U@Au14 are predicted using density functional theory. The presence of the uranium atom makes the Au14 structure more stable than the empty Au14-cage, with a triplet ground electronic sta te for U@Au14. Analysis of the electronic structure shows that the two frontier single-occupied molecular orbital electrons of U@Au14 mainly originate from the 5f shell of the U atom after charge transfer. Meanwhile, the bonding orbitals have both the 5f and 6d components of the U atom, along with the 5d and 6s components of the Au atoms, indicating the covalent nature of the interaction between the U and Au atoms. Moreover, the charge population analysis shows that this nanostructure displays some unique electronic properties where the encapsulated atom gains electrons while the outer shell loses electrons. Therefore, this designed U@Au14 nano-cage structure is stabilized by ionocovalent interactions. The current findings provide theoretical basis for future syntheses and further study of actinide doped gold nanoclusters, which might subsequently facilitate applications of such structure in radio-labeling, nanodrug carrier and other biomedical applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا