ترغب بنشر مسار تعليمي؟ اضغط هنا

The First Swift Intensive AGN Accretion Disk Reverberation Mapping Survey

385   0   0.0 ( 0 )
 نشر من قبل Rick Edelson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Swift intensive accretion disk reverberation mapping of four AGN yielded light curves sampled $sim$200-350 times in 0.3-10 keV X-ray and six UV/optical bands. Uniform reduction and cross-correlation analysis of these datasets yields three main results: 1) The X-ray/UV correlations are much weaker than those within the UV/optical, posing severe problems for the lamp-post reprocessing model in which variations in a central X-ray corona drive and power those in the surrounding accretion disk. 2) The UV/optical interband lags are generally consistent with $ tau propto lambda^{4/3} $ as predicted by the centrally illuminated thin accretion disk model. While the average interband lags are somewhat larger than predicted, these results alone are not inconsistent with the thin disk model given the large systematic uncertainties involved. 3) The one exception is the U band lags, which are on average a factor of $sim$2.2 larger than predicted from the surrounding band data and fits. This excess appears due to diffuse continuum emission from the broad-line region (BLR). The precise mixing of disk and BLR components cannot be determined from these data alone. The lags in different AGN appear to scale with mass or luminosity. We also find that there are systematic differences between the uncertainties derived by javelin vs. more standard lag measurement techniques, with javelin reporting smaller uncertainties by a factor of 2.5 on average. In order to be conservative only standard techniques were used in the analyses reported herein.



قيم البحث

اقرأ أيضاً

We present the accretion disk size estimates for a sample of 19 active galactic nuclei (AGN) using the optical $g$, $r$, and $i$ band light curves obtained from the Zwicky Transient Facility (ZTF) survey. All the AGN have reliable supermassive black hole (SMBH) mass estimates based on previous reverberation mapping measurements. The multi-band light curves are cross-correlated, and the reverberation lag is estimated using the Interpolated Cross-Correlation Function (ICCF) method and the Bayesian method using the {sc javelin} code. As expected from the disk reprocessing arguments, the $g-r$ band lags are shorter than the $g-i$ band lags for this sample. The interband lags for all, but 5 sources, are larger than the sizes predicted from the standard Shakura Sunyaev (SS) analytical model. We fit the light curves directly using a thin disk model implemented through the {sc javelin} code to get the accretion disk sizes. The disk sizes obtained using this model are on an average 3.9 times larger than the prediction based on the SS disk model. We find a weak correlation between the disk sizes and the known physical parameters, namely, the luminosity and the SMBH mass. In the near future, a large sample of AGN covering a range of luminosity and SMBH mass from large photometric surveys would be helpful in a better understanding of the structure and physics of the accretion disk.
Recent intensive Swift monitoring of the Seyfert 1 galaxy NGC 5548 yielded 282 usable epochs over 125 days across six UV/optical bands and the X-rays. This is the densest extended AGN UV/optical continuum sampling ever obtained, with a mean sampling rate <0.5 day. Approximately daily HST UV sampling was also obtained. The UV/optical light curves show strong correlations (r_max = 0.57 - 0.90) and the clearest measurement to date of interband lags. These lags are well-fit by a tau propto lambda^4/3 wavelength dependence, with a normalization that indicates an unexpectedly large disk radius of 0.35 +/- 0.05 lt-day at 1367 A, assuming a simple face-on model. The U-band shows a marginally larger lag than expected from the fit and surrounding bands, which could be due to Balmer continuum emission from the broad-line region as suggested by Korista and Goad. The UV/X-ray correlation is weaker (r_max < 0.45) and less consistent over time. This indicates that while Swift is beginning to measure UV/optical lags in general agreement with accretion disk theory (although the derived size is larger than predicted), the relationship with X-ray variability is less well understood. Combining this accretion disk size estimate with those from quasar microlensing studies suggests that AGN disk sizes scale approximately linearly with central black hole mass over a wide range of masses.
73 - D. Mudd , P. Martini , Y. Zu 2017
We present accretion disk size measurements for 15 luminous quasars at $0.7 leq z leq 1.9$ derived from $griz$ light curves from the Dark Energy Survey. We measure the disk sizes with continuum reverberation mapping using two methods, both of which a re derived from the expectation that accretion disks have a radial temperature gradient and the continuum emission at a given radius is well-described by a single blackbody. In the first method we measure the relative lags between the multiband light curves, which provides the relative time lag between shorter and longer wavelength variations. From this, we are only able to constrain upper limits on disk sizes, as many are consistent with no lag the 2$sigma$ level. The second method fits the model parameters for the canonical thin disk directly rather than solving for the individual time lags between the light curves. Our measurements demonstrate good agreement with the sizes predicted by this model for accretion rates between 0.3-1 times the Eddington rate. Given our large uncertainties, our measurements are also consistent with disk size measurements from gravitational microlensing studies of strongly lensed quasars, as well as other photometric reverberation mapping results, that find disk sizes that are a factor of a few ($sim$3) larger than predictions.
We present accretion-disk structure measurements from UV-optical reverberation mapping observations of a sample of eight quasars at 0.24<z<0.85. Ultraviolet photometry comes from two cycles of Hubble Space Telescope monitoring, accompanied by multi-b and optical monitoring by the Las Cumbres Observatory network and Liverpool Telescopes. The targets were selected from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project sample with reliable black-hole mass measurements from Hbeta reverberation mapping results. We measure significant lags between the UV and various optical griz bands using JAVELIN and CREAM methods. We use the significant lag results from both methods to fit the accretion-disk structure using a Markov chain Monte Carlo approach. We study the accretion disk as a function of disk normalization, temperature scaling, and efficiency. We find direct evidence for diffuse nebular emission from Balmer and FeII lines over discrete wavelength ranges. We also find that our best-fit disk color profile is broadly consistent with the Shakura & Sunyaev disk model. We compare our UV-optical lags to the disk sizes inferred from optical-optical lags of the same quasars and find that our results are consistent with these quasars being drawn from a limited high-lag subset of the broader population. Our results are therefore broadly consistent with models that suggest longer disk lags in a subset of quasars, for example, due to a nonzero size of the ionizing corona and/or magnetic heating contributing to the disk response.
We present results of time-series analysis of the first year of the Fairall 9 intensive disc-reverberation campaign. We used Swift and the Las Cumbres Observatory global telescope network to continuously monitor Fairall 9 from X-rays to near-infrared at a daily to sub-daily cadence. The cross-correlation function between bands provides evidence for a lag spectrum consistent with the $tauproptolambda^{4/3}$ scaling expected for an optically thick, geometrically thin blackbody accretion disc. Decomposing the flux into constant and variable components, the variable components spectral energy distribution is slightly steeper than the standard accretion disc prediction. We find evidence at the Balmer edge in both the lag and flux spectra for an additional bound-free continuum contribution that may arise from reprocessing in the broad-line region. The inferred driving light curve suggests two distinct components, a rapidly variable ($<4$ days) component arising from X-ray reprocessing, and a more slowly varying ($>100$ days) component with an opposite lag to the reverberation signal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا