ﻻ يوجد ملخص باللغة العربية
We build a connection between topology of smooth 4-manifolds and the theory of topological modular forms by considering topologically twisted compactification of 6d (1,0) theories on 4-manifolds with flavor symmetry backgrounds. The effective 2d theory has (0,1) supersymmetry and, possibly, a residual flavor symmetry. The equivariant topological Witten genus of this 2d theory then produces a new invariant of the 4-manifold equipped with a principle bundle, valued in the ring of equivariant weakly holomorphic (topological) modular forms. We describe basic properties of this map and present a few simple examples. As a byproduct, we obtain some new results on t Hooft anomalies of 6d (1,0) theories and a better understanding of the relation between 2d (0,1) theories and TMF spectra.
We reformulate the question of the absence of global anomalies of heterotic string theory mathematically in terms of a certain natural transformation $mathrm{TMF}^bulletto (I_{mathbb{Z}}Omega^text{string})^{bullet-20}$, from topological modular forms
By enforcing invariance under S-duality in type IIB string theory compactified on a Calabi-Yau threefold, we derive modular properties of the generating function of BPS degeneracies of D4-D2-D0 black holes in type IIA string theory compactified on th
We prove that there is no parity anomaly in M-theory in the low-energy field theory approximation. Our approach is computational. We determine generators for the 12-dimensional bordism group of pin manifolds with a w_1-twisted integer lift of w_4; th
Spacetime theories obtained from perturbative string theory constructions are automatically free of perturbative anomalies, but it is not settled whether they are always free of global anomalies. Here we discuss a possible $mathbb{Z}_{24}$-valued pur
We study modular transformation of holomorphic Yukawa couplings in magnetized D-brane models. It is found that their products are modular forms, which are non-trivial representations of finite modular subgroups, e.g. $S_3$, $S_4$, $Delta(96)$ and $Delta(384)$.