ترغب بنشر مسار تعليمي؟ اضغط هنا

Safely Probabilistically Complete Real-Time Planning and Exploration in Unknown Environments

110   0   0.0 ( 0 )
 نشر من قبل David Fridovich-Keil
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new framework for motion planning that wraps around existing kinodynamic planners and guarantees recursive feasibility when operating in a priori unknown, static environments. Our approach makes strong guarantees about overall safety and collision avoidance by utilizing a robust controller derived from reachability analysis. We ensure that motion plans never exit the safe backward reachable set of the initial state, while safely exploring the space. This preserves the safety of the initial state, and guarantees that that we will eventually find the goal if it is possible to do so while exploring safely. We implement our framework in the Robot Operating System (ROS) software environment and demonstrate it in a real-time simulation.



قيم البحث

اقرأ أيضاً

Motion planners for mobile robots in unknown environments face the challenge of simultaneously maintaining both robustness against unmodeled uncertainties and persistent feasibility of the trajectory-finding problem. That is, while dealing with uncer tainties, a motion planner must update its trajectory, adapting to the newly revealed environment in real-time; failing to do so may involve unsafe circumstances. Many existing planning algorithms guarantee these by maintaining the clearance needed to perform an emergency brake, which is itself a robust and persistently feasible maneuver. However, such maneuvers are not applicable for systems in which braking is impossible or risky, such as fixed-wing aircraft. To that end, we propose a real-time robust planner that recursively guarantees persistent feasibility without any need of braking. The planner ensures robustness against bounded uncertainties and persistent feasibility by constructing a loop of sequentially composed funnels, starting from the receding horizon local trajectorys forward reachable set. We implement the proposed algorithm for a robotic car tracking a speed-fixed reference trajectory. The experiment results show that the proposed algorithm can be run at faster than 16 Hz, while successfully keeping the system away from entering any dead-end, to maintain safety and feasibility.
Autonomous navigation through unknown environments is a challenging task that entails real-time localization, perception, planning, and control. UAVs with this capability have begun to emerge in the literature with advances in lightweight sensing and computing. Although the planning methodologies vary from platform to platform, many algorithms adopt a hierarchical planning architecture where a slow, low-fidelity global planner guides a fast, high-fidelity local planner. However, in unknown environments, this approach can lead to erratic or unstable behavior due to the interaction between the global planner, whose solution is changing constantly, and the local planner; a consequence of not capturing higher-order dynamics in the global plan. This work proposes a planning framework in which multi-fidelity models are used to reduce the discrepancy between the local and global planner. Our approach uses high-, medium-, and low-fidelity models to compose a path that captures higher-order dynamics while remaining computationally tractable. In addition, we address the interaction between a fast planner and a slower mapper by considering the sensor data not yet fused into the map during the collision check. This novel mapping and planning framework for agile flights is validated in simulation and hardware experiments, showing replanning times of 5-40 ms in cluttered environments.
We propose a novel planning technique for satisfying tasks specified in temporal logic in partially revealed environments. We define high-level actions derived from the environment and the given task itself, and estimate how each action contributes t o progress towards completing the task. As the map is revealed, we estimate the cost and probability of success of each action from images and an encoding of that action using a trained neural network. These estimates guide search for the minimum-expected-cost plan within our model. Our learned model is structured to generalize across environments and task specifications without requiring retraining. We demonstrate an improvement in total cost in both simulated and real-world experiments compared to a heuristic-driven baseline.
A hybrid map representation, which consists of a modified generalized Voronoi Diagram (GVD)-based topological map and a grid-based metric map, is proposed to facilitate a new frontier-driven exploration strategy. Exploration frontiers are the regions on the boundary between open space and unexplored space. A mobile robot is able to construct its map by adding new space and moving to unvisited frontiers until the entire environment has been explored. The existing exploration methods suffer from low exploration efficiency in complex environments due to the lack of a systematical way to determine and assign optimal exploration command. Leveraging on the abstracted information from the GVD map (global) and the detected frontier in the local sliding window, a global-local exploration strategy is proposed to handle the exploration task in a hierarchical manner. The new exploration algorithm is able to create a modified tree structure to represent the environment while consolidating global frontier information during the self-exploration. The proposed method is verified in simulated environments, and then tested in real-world office environments as well.
This paper presents an algorithmic framework for the distributed on-line source seeking, termed as DoSS, with a multi-robot system in an unknown dynamical environment. Our algorithm, building on a novel concept called dummy confidence upper bound (D- UCB), integrates both estimation of the unknown environment and task planning for the multiple robots simultaneously, and as a result, drives the team of robots to a steady state in which multiple sources of interest are located. Unlike the standard UCB algorithm in the context of multi-armed bandits, the introduction of D-UCB significantly reduces the computational complexity in solving subproblems of the multi-robot task planning. This also enables our DoSS algorithm to be implementable in a distributed on-line manner. The performance of the algorithm is theoretically guaranteed by showing a sub-linear upper bound of the cumulative regret. Numerical results on a real-world methane emission seeking problem are also provided to demonstrate the effectiveness of the proposed algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا