ترغب بنشر مسار تعليمي؟ اضغط هنا

Deeper Interpretability of Deep Networks

97   0   0.0 ( 0 )
 نشر من قبل Tian Xu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep Convolutional Neural Networks (CNNs) have been one of the most influential recent developments in computer vision, particularly for categorization. There is an increasing demand for explainable AI as these systems are deployed in the real world. However, understanding the information represented and processed in CNNs remains in most cases challenging. Within this paper, we explore the use of new information theoretic techniques developed in the field of neuroscience to enable novel understanding of how a CNN represents information. We trained a 10-layer ResNet architecture to identify 2,000 face identities from 26M images generated using a rigorously controlled 3D face rendering model that produced variations of intrinsic (i.e. face morphology, gender, age, expression and ethnicity) and extrinsic factors (i.e. 3D pose, illumination, scale and 2D translation). With our methodology, we demonstrate that unlike humans network overgeneralizes face identities even with extreme changes of face shape, but it is more sensitive to changes of texture. To understand the processing of information underlying these counterintuitive properties, we visualize the features of shape and texture that the network processes to identify faces. Then, we shed a light into the inner workings of the black box and reveal how hidden layers represent these features and whether the representations are invariant to pose. We hope that our methodology will provide an additional valuable tool for interpretability of CNNs.

قيم البحث

اقرأ أيضاً

96 - Yinpeng Dong , Hang Su , Jun Zhu 2017
Interpretability of deep neural networks (DNNs) is essential since it enables users to understand the overall strengths and weaknesses of the models, conveys an understanding of how the models will behave in the future, and how to diagnose and correc t potential problems. However, it is challenging to reason about what a DNN actually does due to its opaque or black-box nature. To address this issue, we propose a novel technique to improve the interpretability of DNNs by leveraging the rich semantic information embedded in human descriptions. By concentrating on the video captioning task, we first extract a set of semantically meaningful topics from the human descriptions that cover a wide range of visual concepts, and integrate them into the model with an interpretive loss. We then propose a prediction difference maximization algorithm to interpret the learned features of each neuron. Experimental results demonstrate its effectiveness in video captioning using the interpretable features, which can also be transferred to video action recognition. By clearly understanding the learned features, users can easily revise false predictions via a human-in-the-loop procedure.
In this paper, we propose a novel interpretation method tailored to histological Whole Slide Image (WSI) processing. A Deep Neural Network (DNN), inspired by Bag-of-Features models is equipped with a Multiple Instance Learning (MIL) branch and traine d with weak supervision for WSI classification. MIL avoids label ambiguity and enhances our models expressive power without guiding its attention. We utilize a fine-grained logit heatmap of the models activations to interpret its decision-making process. The proposed method is quantitatively and qualitatively evaluated on two challenging histology datasets, outperforming a variety of baselines. In addition, two expert pathologists were consulted regarding the interpretability provided by our method and acknowledged its potential for integration into several clinical applications.
In this work we introduce Lean Point Networks (LPNs) to train deeper and more accurate point processing networks by relying on three novel point processing blocks that improve memory consumption, inference time, and accuracy: a convolution-type block for point sets that blends neighborhood information in a memory-efficient manner; a crosslink block that efficiently shares information across low- and high-resolution processing branches; and a multiresolution point cloud processing block for faster diffusion of information. By combining these blocks, we design wider and deeper point-based architectures. We report systematic accuracy and memory consumption improvements on multiple publicly available segmentation tasks by using our generic modules as drop-in replacements for the blocks of multiple architectures (PointNet++, DGCNN, SpiderNet, PointCNN).
Deep neural networks that yield human interpretable decisions by architectural design have lately become an increasingly popular alternative to post hoc interpretation of traditional black-box models. Among these networks, the arguably most widesprea d approach is so-called prototype learning, where similarities to learned latent prototypes serve as the basis of classifying an unseen data point. In this work, we point to an important shortcoming of such approaches. Namely, there is a semantic gap between similarity in latent space and similarity in input space, which can corrupt interpretability. We design two experiments that exemplify this issue on the so-called ProtoPNet. Specifically, we find that this networks interpretability mechanism can be led astray by intentionally crafted or even JPEG compression artefacts, which can produce incomprehensible decisions. We argue that practitioners ought to have this shortcoming in mind when deploying prototype-based models in practice.
120 - Xiao Dong , Ling Zhou 2019
How to understand deep learning systems remains an open problem. In this paper we propose that the answer may lie in the geometrization of deep networks. Geometrization is a bridge to connect physics, geometry, deep network and quantum computation an d this may result in a new scheme to reveal the rule of the physical world. By comparing the geometry of image matching and deep networks, we show that geometrization of deep networks can be used to understand existing deep learning systems and it may also help to solve the interpretability problem of deep learning systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا