ترغب بنشر مسار تعليمي؟ اضغط هنا

Segregated Temporal Assembly Recurrent Networks for Weakly Supervised Multiple Action Detection

113   0   0.0 ( 0 )
 نشر من قبل Zhanzhan Cheng
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a segregated temporal assembly recurrent (STAR) network for weakly-supervised multiple action detection. The model learns from untrimmed videos with only supervision of video-level labels and makes prediction of intervals of multiple actions. Specifically, we first assemble video clips according to class labels by an attention mechanism that learns class-variable attention weights and thus helps the noise relieving from background or other actions. Secondly, we build temporal relationship between actions by feeding the assembled features into an enhanced recurrent neural network. Finally, we transform the output of recurrent neural network into the corresponding action distribution. In order to generate more precise temporal proposals, we design a score term called segregated temporal gradient-weighted class activation mapping (ST-GradCAM) fused with attention weights. Experiments on THUMOS14 and ActivityNet1.3 datasets show that our approach outperforms the state-of-the-art weakly-supervised method, and performs at par with the fully-supervised counterparts.



قيم البحث

اقرأ أيضاً

Most work on temporal action detection is formulated as an offline problem, in which the start and end times of actions are determined after the entire video is fully observed. However, important real-time applications including surveillance and driv er assistance systems require identifying actions as soon as each video frame arrives, based only on current and historical observations. In this paper, we propose a novel framework, Temporal Recurrent Network (TRN), to model greater temporal context of a video frame by simultaneously performing online action detection and anticipation of the immediate future. At each moment in time, our approach makes use of both accumulated historical evidence and predicted future information to better recognize the action that is currently occurring, and integrates both of these into a unified end-to-end architecture. We evaluate our approach on two popular online action detection datasets, HDD and TVSeries, as well as another widely used dataset, THUMOS14. The results show that TRN significantly outperforms the state-of-the-art.
Weakly supervised action localization is a challenging task with extensive applications, which aims to identify actions and the corresponding temporal intervals with only video-level annotations available. This paper analyzes the order-sensitive and location-insensitive properties of actions, and embodies them into a self-augmented learning framework to improve the weakly supervised action localization performance. To be specific, we propose a novel two-branch network architecture with intra/inter-action shuffling, referred to as ActShufNet. The intra-action shuffling branch lays out a self-supervised order prediction task to augment the video representation with inner-video relevance, whereas the inter-action shuffling branch imposes a reorganizing strategy on the existing action contents to augment the training set without resorting to any external resources. Furthermore, the global-local adversarial training is presented to enhance the models robustness to irrelevant noises. Extensive experiments are conducted on three benchmark datasets, and the results clearly demonstrate the efficacy of the proposed method.
258 - Zheng Shou , Hang Gao , Lei Zhang 2018
Temporal Action Localization (TAL) in untrimmed video is important for many applications. But it is very expensive to annotate the segment-level ground truth (action class and temporal boundary). This raises the interest of addressing TAL with weak s upervision, namely only video-level annotations are available during training). However, the state-of-the-art weakly-supervised TAL methods only focus on generating good Class Activation Sequence (CAS) over time but conduct simple thresholding on CAS to localize actions. In this paper, we first develop a novel weakly-supervised TAL framework called AutoLoc to directly predict the temporal boundary of each action instance. We propose a novel Outer-Inner-Contrastive (OIC) loss to automatically discover the needed segment-level supervision for training such a boundary predictor. Our method achieves dramatically improved performance: under the IoU threshold 0.5, our method improves mAP on THUMOS14 from 13.7% to 21.2% and mAP on ActivityNet from 7.4% to 27.3%. It is also very encouraging to see that our weakly-supervised method achieves comparable results with some fully-supervised methods.
Weakly supervised temporal action localization aims to detect and localize actions in untrimmed videos with only video-level labels during training. However, without frame-level annotations, it is challenging to achieve localization completeness and relieve background interference. In this paper, we present an Action Unit Memory Network (AUMN) for weakly supervised temporal action localization, which can mitigate the above two challenges by learning an action unit memory bank. In the proposed AUMN, two attention modules are designed to update the memory bank adaptively and learn action units specific classifiers. Furthermore, three effective mechanisms (diversity, homogeneity and sparsity) are designed to guide the updating of the memory network. To the best of our knowledge, this is the first work to explicitly model the action units with a memory network. Extensive experimental results on two standard benchmarks (THUMOS14 and ActivityNet) demonstrate that our AUMN performs favorably against state-of-the-art methods. Specifically, the average mAP of IoU thresholds from 0.1 to 0.5 on the THUMOS14 dataset is significantly improved from 47.0% to 52.1%.
As a challenging task of high-level video understanding, weakly supervised temporal action localization has been attracting increasing attention. With only video annotations, most existing methods seek to handle this task with a localization-by-class ification framework, which generally adopts a selector to select snippets of high probabilities of actions or namely the foreground. Nevertheless, the existing foreground selection strategies have a major limitation of only considering the unilateral relation from foreground to actions, which cannot guarantee the foreground-action consistency. In this paper, we present a framework named FAC-Net based on the I3D backbone, on which three branches are appended, named class-wise foreground classification branch, class-agnostic attention branch and multiple instance learning branch. First, our class-wise foreground classification branch regularizes the relation between actions and foreground to maximize the foreground-background separation. Besides, the class-agnostic attention branch and multiple instance learning branch are adopted to regularize the foreground-action consistency and help to learn a meaningful foreground classifier. Within each branch, we introduce a hybrid attention mechanism, which calculates multiple attention scores for each snippet, to focus on both discriminative and less-discriminative snippets to capture the full action boundaries. Experimental results on THUMOS14 and ActivityNet1.3 demonstrate the state-of-the-art performance of our method. Our code is available at https://github.com/LeonHLJ/FAC-Net.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا