ﻻ يوجد ملخص باللغة العربية
We consider the generalized (10+10)-dimensional D=4 quantum phase spaces containing translational and Lorentz spin sectors associated with the dual pair of twist-quantized Poincare Hopf algebra $mathbb{H}$ and quantum Poincare Hopf group $widehat{mathbb{G}}$. Two Hopf algebroid structures of generalized phase spaces with spin sector will be investigated: first one $% mathcal{H}^{(10,10)}$ describing dynamics on quantum group algebra $% widehat{mathbb{G}}$ provided by the Heisenberg double algebra $mathcal{HD=% }mathbb{H}rtimes widehat{mathbb{G}}$, and second, denoted by $mathcal{% tilde{H}}^{(10,10)}$, describing twisted Hopf algebroid with base space containing twisted noncommutative Minkowski space $hat{x}_{mu }$. We obtain the first explicit example of Hopf algebroid structure of relativistic quantum phase space which contains quantum-deformed Lorentz spin sector.
We consider new Abelian twists of Poincare algebra describing non-symmetric generalization of the ones given in [1], which lead to the class of Lie-deformed quantum Minkowski spaces. We apply corresponding twist quantization in two ways: as generatin
We consider the general D=4 (10+10)-dimensional kappa-deformed quantum phase space as given by Heisenberg double mathcal{H} of D=4 kappa-deformed Poincare-Hopf algebra H. The standard (4+4) -dimensional kappa - deformed covariant quantum phase space
We consider two quantum phase spaces which can be described by two Hopf algebroids linked with the well-known $theta_{mu u }$-deformed $D=4$ Poincare-Hopf algebra $mathbb{H}$. The first algebroid describes $theta_{mu u }$-deformed relativistic phas
The $(4+4)$-dimensional $kappa$-deformed quantum phase space as well as its $(10+10)$-dimensional covariant extension by the Lorentz sector can be described as Heisenberg doubles: the $(10+10)$-dimensional quantum phase space is the double of $D=4$ $
We use the decomposition of o(3,1)=sl(2;C)_1oplus sl(2;C)_2 in order to describe nonstandard quantum deformation of o(3,1) linked with Jordanian deformation of sl(2;C}. Using twist quantization technique we obtain the deformed coproducts and antipode