ﻻ يوجد ملخص باللغة العربية
It is established existence of bound and ground state solutions for quasilinear elliptic systems driven by (phi 1, phi 2)-Laplacian operator. The main feature here is to consider quasilinear elliptic systems involving both nonsingular nonlinearities combined with indefinite potentials and singular cases perturbed by superlinear and subcritical couple terms. These prevent us to use arguments based on Ambrosetti-Rabinowitz condition and variational methods for differentiable functionals. By exploring the Nehari method and doing a fine analysis on the fibering map associated, we get estimates that allow us unify the arguments to show multiplicity of semi-trivial solutions in both cases.
In present paper, we prove the existence of solutions $(lambda_1,lambda_2, u_1,u_2)in R^2times H^1(R^N, R^2)$ to systems of nonlinear Schrodinger equations with potentials $$begin{cases} -Delta u_1+V_1(x)u_1+lambda_1 u_1=partial_1 G(u_1,u_2);quad&hbo
The existence of positive weak solutions to a singular quasilinear elliptic system in the whole space is established via suitable a priori estimates and Schauders fixed point theorem.
In this paper, we are concerned with the existence and asymptotic behavior of minimizers for a minimization problem related to some quasilinear elliptic equations. Firstly, we proved that there exist minimizers when the exponent $q$ equals to the cri
We investigate qualitative properties of positive singular solutions of some elliptic systems in bounded and unbounded domains. We deduce symmetry and monotonicity properties via the moving plane procedure. Moreover, in the unbounded case, we study s
This paper deals with existence and regularity of positive solutions of singular elliptic problems on a smooth bounded domain with Dirichlet boundary conditions involving the $Phi$-Laplacian operator. The proof of existence is based on a variant of t