ترغب بنشر مسار تعليمي؟ اضغط هنا

Stable structural phase of potassium-doped p-terphenyl and its semiconducting state

75   0   0.0 ( 0 )
 نشر من قبل Xun-Wang Yan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The potassium-doped p-terphenyl compounds were synthesized in recent experiments and the superconductivity with high transition temperatures were reported, but the atomic structure of potassium-doped p-terphenyl is unclear. In this paper, we studied the structural and electronic properties of potassium-doped p-terphenyl with various doping levels by the first-principles simulation. We first find out the low energy position of K atom in intralayer interstitial space of the molecular layer, then examine whether two rows of K atoms can be accommodated in this one space, at last the effect of the interlayer arrangement between adjacent two molecular layers on total energy is taken into account. Our results show that the doped K atoms prefer to stay at the bridge site of single C-C bond connected two phenyls instead of locating at the site above the phenyl ring, distinct from the situation of K-doped picene and phenanthrene. Among the possible structural phases of Kx-p-terphenyl, the K2-p-terphenyl phase with P212121 group symmetry is determined to be most appropriate, which is different from the one in recent report. The stable K 2 -p-terphenyl phase is semiconducting with an energy gap of 0.3 eV and the bands from the lowest unoccupied molecular orbitals are just fully filled by the electrons transferred from K atoms.



قيم البحث

اقرأ أيضاً

By using high pressure synthesis method, we have fabricated the potassium doped para-terphenyl. The temperature dependence of magnetization measured in both zero-field-cooled and field-cooled processes shows step like transitions at about 125 K. This confirms earlier report about the possible superconductivity like transition in the same system. However, the magnetization hysteresis loop exhibits a weak ferromagnetic background. After removing this ferromagnetic background, a Meissner effect like magnetic shielding can be found. A simple estimate on the diamagnetization of this step tells that the diamagnetic volume is only about 0.0427% at low temperatures, if we assume the penetration depth is much smaller than the size of possible superconducting grains. This magnetization transition does not shift with magnetic field but is suppressed and becomes almost invisible above 1.0 T. The resistivity measurements are failed because of an extremely large resistance. By using the same method, we also fabricated the potassium doped para-quaterphenyl. A similar step like transition at about 125 K was also observed by magnetization measurement. Since there is an unknown positive background and the diamagnetic volume is too small, it is insufficient to conclude that this step is derived from superconductivity although it looks like.
135 - M. Q. Ren , W. Chen , Q. Liu 2017
Recently, superconductivity in potassium (K) doped p-terphenyl (C18H14) has been suggested by the possible observation of the Meissner effect and subsequent photoemission spectroscopy measurements, but the detailed lattice structure and more-direct e vidence are still lacking. Here we report a low temperature scanning tunneling microscopy/spectroscopy (STM/STS) study on K-doped single layer p-terphenyl films grown on Au (111). We observe several ordered phases with different morphologies and electronic behaviors, in two of which a sharp and symmetric low-energy gap of about 11 meV opens below 50 K. In particular, the gap shows no obvious response to a magnetic field up to 11 Tesla, which would caution against superconductivity as an interpretation in previous reports of K-doped p-terphenyl materials. Such gapped phases are rarely (if ever) observed in single layer hydrocarbon molecular crystals. Our work also paves the way for fabricating doped two-dimensional (2D) hydrocarbon materials, which will provide a platform to search for novel emergent phenomena.
63 - P. Neha , V. Sahu , 2017
Synthesis methodology for flakes of p-terphenyl through sublimation under inert atmosphere of argon is presented. Flake morphology of p-terphenyl provides a favourable environment for efficient intercalation of potassium. Ratio of potassium and p-ter phenyl is adjusted so as to obtain the desired superconducting phase i.e. potassium doped p-terphenyl (K3C18H14). A clear transition is observed at 107 K under Zero Field Cooled (ZFC) and Field Cooled (FC) mode. But overall the moment is positive possibly due to impurity phase dominating characteristics in the presence of negligible superconducting volume fraction. The M-H loop taken at 20 K shows magnetic behaviour in synthesized K- doped p-terphenyl but upon background subtraction, it does exhibit characteristics of a type-2 superconductor.
Preliminary evidence for the occurrence of high-Tc superconductivity in alkali-doped organic materials, such as potassium-doped p-terphenyl (KPT), were recently obtained by magnetic susceptibility measurements and by the opening of a large supercondu cting gap as measured by ARPES and STM techniques. In this work, KPT samples have been synthesized by a chemical method and characterized by low-temperature Raman scattering and resistivity measurements. Here, we report the occurrence of a resistivity drop of more than 4 orders of magnitude at low temperatures in KPT samples in the form of compressed powder. This fact was interpreted as a possible sign of a broad superconducting transition taking place below 90 K in granular KPT. The granular nature of the KPT system appears to be also related to the 20 K broadening of the resistivity drop around the critical temperature.
We report an easy and versatile route for the synthesis of the parent phase of newest superconducting wonder material i.e. p-Terphenyl. Doped p-terphenyl has recently shown superconductivity with transition temperature as high as 120K. For crystal gr owth, the commercially available p-Terphenyl powder is pelletized, encapsulated in evacuated (10-4 Torr) quartz tube and subjected to high temperature (260C) melt followed by slow cooling at 5C/hour. Simple temperature controlled heating furnace is used during the process. The obtained crystal is one piece, shiny and plate like. Single crystal surface XRD (X-ray Diffraction) showed unidirectional (00l) lines, indicating that the crystal is grown along c-direction. Powder XRD of the specimen showed that as grown p-Terphenyl is crystallized in monoclinic structure with space group P21/a space group, having lattice parameters a = 8.08(2) A, b = 5.62(5) A and c= 13.58(3) A. Scanning electron microscopy (SEM) pictures of the crystal showed clear layered slab like growth without any visible contamination from oxygen. Characteristic reported Raman active modes related to C-C-C bending, C-H bending, C-C stretching and C-H stretching vibrations are seen clearly for the studied p-Terphenyl crystal. The physical properties of crystal are yet underway. The short letter reports an easy and versatile crystal growth method for obtaining quality p-terphenyl. The same growth method may probably be applied to doped p-terphenyl and to subsequently achieve superconductivity to the tune of as high 120K for the newest superconductivity wonder i.e., High Tc Oraganic Superconductor (HTOS).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا