ﻻ يوجد ملخص باللغة العربية
The potassium-doped p-terphenyl compounds were synthesized in recent experiments and the superconductivity with high transition temperatures were reported, but the atomic structure of potassium-doped p-terphenyl is unclear. In this paper, we studied the structural and electronic properties of potassium-doped p-terphenyl with various doping levels by the first-principles simulation. We first find out the low energy position of K atom in intralayer interstitial space of the molecular layer, then examine whether two rows of K atoms can be accommodated in this one space, at last the effect of the interlayer arrangement between adjacent two molecular layers on total energy is taken into account. Our results show that the doped K atoms prefer to stay at the bridge site of single C-C bond connected two phenyls instead of locating at the site above the phenyl ring, distinct from the situation of K-doped picene and phenanthrene. Among the possible structural phases of Kx-p-terphenyl, the K2-p-terphenyl phase with P212121 group symmetry is determined to be most appropriate, which is different from the one in recent report. The stable K 2 -p-terphenyl phase is semiconducting with an energy gap of 0.3 eV and the bands from the lowest unoccupied molecular orbitals are just fully filled by the electrons transferred from K atoms.
By using high pressure synthesis method, we have fabricated the potassium doped para-terphenyl. The temperature dependence of magnetization measured in both zero-field-cooled and field-cooled processes shows step like transitions at about 125 K. This
Recently, superconductivity in potassium (K) doped p-terphenyl (C18H14) has been suggested by the possible observation of the Meissner effect and subsequent photoemission spectroscopy measurements, but the detailed lattice structure and more-direct e
Synthesis methodology for flakes of p-terphenyl through sublimation under inert atmosphere of argon is presented. Flake morphology of p-terphenyl provides a favourable environment for efficient intercalation of potassium. Ratio of potassium and p-ter
Preliminary evidence for the occurrence of high-Tc superconductivity in alkali-doped organic materials, such as potassium-doped p-terphenyl (KPT), were recently obtained by magnetic susceptibility measurements and by the opening of a large supercondu
We report an easy and versatile route for the synthesis of the parent phase of newest superconducting wonder material i.e. p-Terphenyl. Doped p-terphenyl has recently shown superconductivity with transition temperature as high as 120K. For crystal gr