ﻻ يوجد ملخص باللغة العربية
How stellar feedback from high-mass stars (e.g., H{sc ii} regions) influences the surrounding interstellar medium and regulates new star formation is still unclear. To address this question, we observed the G9.62+0.19 complex in 850 $mu$m continuum with the JCMT/POL-2 polarimeter. An ordered magnetic field has been discovered in its youngest clump, the G9.62 clump. The magnetic field strength is determined to be $sim$1 mG. Magnetic field plays a larger role than turbulence in supporting the clump. However, the G9.62 clump is still unstable against gravitational collapse even if thermal, turbulent, and magnetic field support are taken into account all together. The magnetic field segments in the outskirts of the G9.62 clump seem to point toward the clump center, resembling a dragged-in morphology, indicating that the clump is likely undergoing magnetically-regulated global collapse. However, The magnetic field in its central region is aligned with the shells of the photodissociation regions (PDRs) and is approximately parallel to the ionization (or shock) front, indicating that the magnetic field therein is likely compressed by the expanding H{sc ii} regions that formed in the same complex.
Context. The role of magnetic fields during the formation of high-mass stars is not yet fully understood, and the processes related to the early fragmentation and collapse are largely unexplored today. The high-mass star forming region G9.62+0.19 is
Massive stars, multiple stellar systems and clusters are born from the gravitational collapse of massive dense gaseous clumps, and the way these systems form strongly depends on how the parent clump fragments into cores during collapse. Numerical sim
Stellar feedback from high-mass stars (e.g., H{sc ii} regions) can strongly influence the surrounding interstellar medium and regulate star formation. Our new ALMA observations reveal sequential high-mass star formation taking place within one sub-vi
We present the results of a monitoring campaign using the KAT-7 and HartRAO 26m telescopes, of hydroxyl, methanol and water vapour masers associated with the high-mass star forming region G9.62+0.20E. Periodic flaring of the main line hydroxyl masers
We have carried out polarization calibration for archival JVLA ($sim$9 mm) full polarization observations towards the Class 0 young stellar object (YSO) OMC-3/MMS 6 (also known as HOPS-87), and then compared with the archival ALMA 1.2 mm observations