ترغب بنشر مسار تعليمي؟ اضغط هنا

Compressed magnetic field in the magnetically-regulated global collapsing clump of G9.62+0.19

277   0   0.0 ( 0 )
 نشر من قبل Tie Liu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

How stellar feedback from high-mass stars (e.g., H{sc ii} regions) influences the surrounding interstellar medium and regulates new star formation is still unclear. To address this question, we observed the G9.62+0.19 complex in 850 $mu$m continuum with the JCMT/POL-2 polarimeter. An ordered magnetic field has been discovered in its youngest clump, the G9.62 clump. The magnetic field strength is determined to be $sim$1 mG. Magnetic field plays a larger role than turbulence in supporting the clump. However, the G9.62 clump is still unstable against gravitational collapse even if thermal, turbulent, and magnetic field support are taken into account all together. The magnetic field segments in the outskirts of the G9.62 clump seem to point toward the clump center, resembling a dragged-in morphology, indicating that the clump is likely undergoing magnetically-regulated global collapse. However, The magnetic field in its central region is aligned with the shells of the photodissociation regions (PDRs) and is approximately parallel to the ionization (or shock) front, indicating that the magnetic field therein is likely compressed by the expanding H{sc ii} regions that formed in the same complex.



قيم البحث

اقرأ أيضاً

Context. The role of magnetic fields during the formation of high-mass stars is not yet fully understood, and the processes related to the early fragmentation and collapse are largely unexplored today. The high-mass star forming region G9.62+0.19 is a well known source, presenting several cores at different evolutionary stages. Aims. We determine the magnetic field morphology and strength in the high-mass star forming region G9.62+0.19, to investigate its relation to the evolutionary sequence of the cores. Methods. We use Band 7 ALMA observations in full polarisation mode and we analyse the polarised dust emission. We estimate the magnetic field strength via the Davis-Chandrasekhar-Fermi and the Structure Function methods. Results. We resolve several protostellar cores embedded in a bright and dusty filamentary structure. The polarised emission is clearly detected in six regions. Moreover the magnetic field is oriented along the filament and appears perpendicular to the direction of the outflows. We suggest an evolutionary sequence of the magnetic field, and the less evolved hot core exhibits a magnetic field stronger than the more evolved one. We detect linear polarisation from thermal line emission and we tentatively compared linear polarisation vectors from our observations with previous linearly polarised OH masers observations. We also compute the spectral index, the column density and the mass for some of the cores. Conclusions. The high magnetic field strength and the smooth polarised emission indicate that the magnetic field could play an important role for the fragmentation and the collapse process in the star forming region G9.62+019 and that the evolution of the cores can be magnetically regulated. On average, the magnetic field derived by the linear polarised emission from dust, thermal lines and masers is pointing in the same direction and has consistent strength.
Massive stars, multiple stellar systems and clusters are born from the gravitational collapse of massive dense gaseous clumps, and the way these systems form strongly depends on how the parent clump fragments into cores during collapse. Numerical sim ulations show that magnetic fields may be the key ingredient in regulating fragmentation. Here we present ALMA observations at ~0.25 resolution of the thermal dust continuum emission at ~278 GHz towards a turbulent, dense, and massive clump, IRAS 16061-5048c1, in a very early evolutionary stage. The ALMA image shows that the clump has fragmented into many cores along a filamentary structure. We find that the number, the total mass and the spatial distribution of the fragments are consistent with fragmentation dominated by a strong magnetic field. Our observations support the theoretical prediction that the magnetic field plays a dominant role in the fragmentation process of massive turbulent clump.
Stellar feedback from high-mass stars (e.g., H{sc ii} regions) can strongly influence the surrounding interstellar medium and regulate star formation. Our new ALMA observations reveal sequential high-mass star formation taking place within one sub-vi rial filamentary clump (the G9.62 clump) in the G9.62+0.19 complex. The 12 dense cores (MM 1-12) detected by ALMA are at very different evolutionary stages, from starless core phase to UC H{sc ii} region phase. Three dense cores (MM6, MM7/G, MM8/F) are associated with outflows. The mass-velocity diagrams of outflows associated with MM7/G and MM8/F can be well fitted with broken power laws. The mass-velocity diagram of SiO outflow associated with MM8/F breaks much earlier than other outflow tracers (e.g., CO, SO, CS, HCN), suggesting that SiO traces newly shocked gas, while the other molecular lines (e.g., CO, SO, CS, HCN) mainly trace the ambient gas continuously entrained by outflow jets. Five cores (MM1, MM3, MM5, MM9, MM10) are massive starless core candidates whose masses are estimated to be larger than 25 M$_{sun}$, assuming a dust temperature of $leq$ 20 K. The shocks from the expanding H{sc ii} regions (B & C) to the west may have great impact on the G9.62 clump through compressing it into a filament and inducing core collapse successively, leading to sequential star formation. Our findings suggest that stellar feedback from H{sc ii} regions may enhance the star formation efficiency and suppress the low-mass star formation in adjacent pre-existing massive clumps.
We present the results of a monitoring campaign using the KAT-7 and HartRAO 26m telescopes, of hydroxyl, methanol and water vapour masers associated with the high-mass star forming region G9.62+0.20E. Periodic flaring of the main line hydroxyl masers were found, similar to that seen in the 6.7 and 12.2 GHz methanol masers. The 1667 MHz flares are characterized by a rapid decrease in flux density which is coincident with the start of the 12.2 GHz methanol maser flare. The decrease in the OH maser flux density is followed by a slow increase till a maximum is reached after which the maser decays to its pre-flare level. A possible interpretation of the rapid decrease in the maser flux density is presented. Considering the projected separation between the periodic methanol and OH masers, we conclude that the periodic 12.2 methanol masing region is located about 1600 AU deeper into the molecular envelope compared to the location of the periodic OH masers. A single water maser flare was also detected which seems not to be associated with the same event that gives rise to the periodic methanol and OH maser flares.
107 - Hauyu Baobab Liu 2020
We have carried out polarization calibration for archival JVLA ($sim$9 mm) full polarization observations towards the Class 0 young stellar object (YSO) OMC-3/MMS 6 (also known as HOPS-87), and then compared with the archival ALMA 1.2 mm observations . We found that the innermost $sim$100 au region of OMC-3/MMS 6 is likely very optically thick (e.g., $taugg$1) at $sim$1 mm wavelength such that the dominant polarization mechanism is dichroic extinction. It is marginally optically thin (e.g., $taulesssim$1) at $sim$9 mm wavelength such that the JVLA observations can directly probe the linearly polarized emission from non-spherical dust. Assuming that the projected long axis of dust grains is aligned perpendicular to magnetic field (B-field) lines, we propose that the overall B-field topology resembles an hourglass shape, while this hourglass appears $sim$40$^{circ}$ inclined with respect to the previously reported outflow axis. The geometry of this system is consistent with a magnetically regulated dense (pseudo-)disk. Based on the observed 29.45 GHz flux density and assuming a dust absorption opacity $kappa^{abs}_{29.45,GHz}=$0.0096 cm$^{2} $g$^{-1}$, the derived overall dust mass within a $sim$43 au radius is $sim$14000 $M_{oplus}$. From this case study, it appears to us that some previous 9 mm surveys towards Class 0/I YSOs might have systematically underestimated dust masses by one order of magnitude, owing to that they assumed the too high dust absorption opacity ($sim$0.1 cm$^{2}$ g$^{-1}$) for $sim$9 mm wavelengths but without self-consistently considering the dust scattering opacity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا