ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-Efficient Graph Embedding Learning for PCB Component Detection

297   0   0.0 ( 0 )
 نشر من قبل Chia-Wen Kuo
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a challenging computer vision task, namely the detection of generic components on a PCB, and a novel set of deep-learning methods that are able to jointly leverage the appearance of individual components and the propagation of information across the structure of the board to accurately detect and identify various types of components on a PCB. Due to the expense of manual data labeling, a highly unbalanced distribution of component types, and significant domain shift across boards, most earlier attempts based on traditional image processing techniques fail to generalize well to PCB images with various quality, lighting conditions, etc. Newer object detection pipelines such as Faster R-CNN, on the other hand, require a large amount of labeled data, do not deal with domain shift, and do not leverage structure. To address these issues, we propose a three stage pipeline in which a class-agnostic region proposal network is followed by a low-shot similarity prediction classifier. In order to exploit the data dependency within a PCB, we design a novel Graph Network block to refine the component features conditioned on each PCB. To the best of our knowledge, this is one of the earliest attempts to train a deep learning based model for such tasks, and we demonstrate improvements over recent graph networks for this task. We also provide in-depth analysis and discussion for this challenging task, pointing to future research.

قيم البحث

اقرأ أيضاً

The usage of electronic devices increases, and becomes predominant in most aspects of life. Surface Mount Technology (SMT) is the most common industrial method for manufacturing electric devices in which electrical components are mounted directly ont o the surface of a Printed Circuit Board (PCB). Although the expansion of electronic devices affects our lives in a productive way, failures or defects in the manufacturing procedure of those devices might also be counterproductive and even harmful in some cases. It is therefore desired and sometimes crucial to ensure zero-defect quality in electronic devices and their production. While traditional Image Processing (IP) techniques are not sufficient to produce a complete solution, other promising methods like Deep Learning (DL) might also be challenging for PCB inspection, mainly because such methods require big adequate datasets which are missing, not available or not updated in the rapidly growing field of PCBs. Thus, PCB inspection is conventionally performed manually by human experts. Unsupervised Learning (UL) methods may potentially be suitable for PCB inspection, having learning capabilities on the one hand, while not relying on large datasets on the other. In this paper, we introduce ChangeChip, an automated and integrated change detection system for defect detection in PCBs, from soldering defects to missing or misaligned electronic elements, based on Computer Vision (CV) and UL. We achieve good quality defect detection by applying an unsupervised change detection between images of a golden PCB (reference) and the inspected PCB under various setting. In this work, we also present CD-PCB, a synthesized labeled dataset of 20 pairs of PCB images for evaluation of defect detection algorithms.
We investigate active learning in the context of deep neural network models for change detection and map updating. Active learning is a natural choice for a number of remote sensing tasks, including the detection of local surface changes: changes are on the one hand rare and on the other hand their appearance is varied and diffuse, making it hard to collect a representative training set in advance. In the active learning setting, one starts from a minimal set of training examples and progressively chooses informative samples that are annotated by a user and added to the training set. Hence, a core component of an active learning system is a mechanism to estimate model uncertainty, which is then used to pick uncertain, informative samples. We study different mechanisms to capture and quantify this uncertainty when working with deep networks, based on the variance or entropy across explicit or implicit model ensembles. We show that active learning successfully finds highly informative samples and automatically balances the training distribution, and reaches the same performance as a model supervised with a large, pre-annotated training set, with $approx$99% fewer annotated samples.
Relations amongst entities play a central role in image understanding. Due to the complexity of modeling (subject, predicate, object) relation triplets, it is crucial to develop a method that can not only recognize seen relations, but also generalize to unseen cases. Inspired by a previously proposed visual translation embedding model, or VTransE, we propose a context-augmented translation embedding model that can capture both common and rare relations. The previous VTransE model maps entities and predicates into a low-dimensional embedding vector space where the predicate is interpreted as a translation vector between the embedded features of the bounding box regions of the subject and the object. Our model additionally incorporates the contextual information captured by the bounding box of the union of the subject and the object, and learns the embeddings guided by the constraint predicate $approx$ union (subject, object) $-$ subject $-$ object. In a comprehensive evaluation on multiple challenging benchmarks, our approach outperforms previous translation-based models and comes close to or exceeds the state of the art across a range of settings, from small-scale to large-scale datasets, from common to previously unseen relations. It also achieves promising results for the recently introduced task of scene graph generation.
We present Wasserstein Embedding for Graph Learning (WEGL), a novel and fast framework for embedding entire graphs in a vector space, in which various machine learning models are applicable for graph-level prediction tasks. We leverage new insights o n defining similarity between graphs as a function of the similarity between their node embedding distributions. Specifically, we use the Wasserstein distance to measure the dissimilarity between node embeddings of different graphs. Unlike prior work, we avoid pairwise calculation of distances between graphs and reduce the computational complexity from quadratic to linear in the number of graphs. WEGL calculates Monge maps from a reference distribution to each node embedding and, based on these maps, creates a fixed-sized vector representation of the graph. We evaluate our new graph embedding approach on various benchmark graph-property prediction tasks, showing state-of-the-art classification performance while having superior computational efficiency. The code is available at https://github.com/navid-naderi/WEGL.
112 - Zhongwei Xie , Ling Liu , Lin Li 2021
This paper introduces a two-phase deep feature calibration framework for efficient learning of semantics enhanced text-image cross-modal joint embedding, which clearly separates the deep feature calibration in data preprocessing from training the joi nt embedding model. We use the Recipe1M dataset for the technical description and empirical validation. In preprocessing, we perform deep feature calibration by combining deep feature engineering with semantic context features derived from raw text-image input data. We leverage LSTM to identify key terms, NLP methods to produce ranking scores for key terms before generating the key term feature. We leverage wideResNet50 to extract and encode the image category semantics to help semantic alignment of the learned recipe and image embeddings in the joint latent space. In joint embedding learning, we perform deep feature calibration by optimizing the batch-hard triplet loss function with soft-margin and double negative sampling, also utilizing the category-based alignment loss and discriminator-based alignment loss. Extensive experiments demonstrate that our SEJE approach with the deep feature calibration significantly outperforms the state-of-the-art approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا