ﻻ يوجد ملخص باللغة العربية
This paper presents a challenging computer vision task, namely the detection of generic components on a PCB, and a novel set of deep-learning methods that are able to jointly leverage the appearance of individual components and the propagation of information across the structure of the board to accurately detect and identify various types of components on a PCB. Due to the expense of manual data labeling, a highly unbalanced distribution of component types, and significant domain shift across boards, most earlier attempts based on traditional image processing techniques fail to generalize well to PCB images with various quality, lighting conditions, etc. Newer object detection pipelines such as Faster R-CNN, on the other hand, require a large amount of labeled data, do not deal with domain shift, and do not leverage structure. To address these issues, we propose a three stage pipeline in which a class-agnostic region proposal network is followed by a low-shot similarity prediction classifier. In order to exploit the data dependency within a PCB, we design a novel Graph Network block to refine the component features conditioned on each PCB. To the best of our knowledge, this is one of the earliest attempts to train a deep learning based model for such tasks, and we demonstrate improvements over recent graph networks for this task. We also provide in-depth analysis and discussion for this challenging task, pointing to future research.
The usage of electronic devices increases, and becomes predominant in most aspects of life. Surface Mount Technology (SMT) is the most common industrial method for manufacturing electric devices in which electrical components are mounted directly ont
We investigate active learning in the context of deep neural network models for change detection and map updating. Active learning is a natural choice for a number of remote sensing tasks, including the detection of local surface changes: changes are
Relations amongst entities play a central role in image understanding. Due to the complexity of modeling (subject, predicate, object) relation triplets, it is crucial to develop a method that can not only recognize seen relations, but also generalize
We present Wasserstein Embedding for Graph Learning (WEGL), a novel and fast framework for embedding entire graphs in a vector space, in which various machine learning models are applicable for graph-level prediction tasks. We leverage new insights o
This paper introduces a two-phase deep feature calibration framework for efficient learning of semantics enhanced text-image cross-modal joint embedding, which clearly separates the deep feature calibration in data preprocessing from training the joi