ترغب بنشر مسار تعليمي؟ اضغط هنا

Photonic jet: key role of injection for etchings with a shaped optical fiber tip

61   0   0.0 ( 0 )
 نشر من قبل Robin Pierron
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the key role of the laser injection into a multimode fiber to obtain a photonic jet (PJ). PJ, a high concentrated propagating beam with a full width at half maximum smaller than the diffraction limit, is here generated with a shaped optical fiber tip using a pulsed laser source (1064~nm, 100~ns, 35~kHz). Three optical injection systems of light are compared. For similar etched marks on silicon with diameters around 1~$mu$m, we show that the required ablation energy is minimum when the injected light beam is close to the fundamental mode diameter of the fiber. Thus, we confirm experimentally that to obtain a PJ out of an optical fiber, light injection plays a role as important as that of the tip shape, and therefore the role of the fundamental mode in the process.



قيم البحث

اقرأ أيضاً

63 - Robin Pierron 2018
The etching of semiconductors and metals by a photonic jet (PJ) generated with a shaped optical ber tip is studied. Etched marks with a diameter of 1 micron have been realized on silicon, stainless steel and titanium with a 35 kHz pulsed laser, emitt ing 100 ns pulses at 1064 nm. The selection criteria of the ber and its tip are discussed. We show that a 100/140 silica ber is a good compromise which takes into account the injection, the working distance and the energy coupled in the higherorder modes. The energy balance is performed on the basis of the known ablation threshold of the material. Finally, the dependence between the etching depth and the number of pulses is studied. Saturation is observed probably due to a redeposition of the etched material, showing that a higher pulse energy is required for deeper etchings.
We present a sensor capable of detecting solution-based nanoparticles using an optical fiber tip functionalized with a photonic crystal cavity. When sensor tips are retracted from a nanoparticle solution after being submerged, we find that a combinat ion of convective fluid forces and optically-induced trapping cause an aggregation of nanoparticles to form directly on cavity surfaces. A simple readout of quantum dot photoluminescence coupled to the optical fiber shows that nanoparticle presence and concentration can be detected through modified cavity properties. Our sensor can detect both gold and iron oxide nanoparticles and can be utilized for molecular sensing applications in biomedicine.
95 - Robin Pierron 2018
We report on the rst evidence of direct micropeak machining using a photonic jet (PJ) with nanosecond laser pulses. PJ is a high concentrated propagative light beam with a full width at half maximum (FWHM) smaller than the diraction limit. In our cas e, PJs are generated with a shaped optical ber tip. Micropeaks with a FWHM of around 1 $mu$m, a height until 590 nm and an apex radius of 14 nm, were repeatability achieved on a silicon wafer. The experiments have been carried out in ambient air using a 100/140 multimode silica ber with a shaped tip along with a 35 kHz pulsed laser emitting 100 ns pulses at 1064 nm. This study shows that the phenomenon occurs only at low energies, just under the ablation threshold. Bulk material appears to have moved around to achieve the peaks in a selforganized process. We hypothesize that the matter was melted and not vaporized; hydrodynamic ow of molten material governed by surfacetension forces may be the causes. This surface modication has many applications. For example, this paper reports on the decrease of wettability of a textured silicon wafer.
Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion and frequency comb generation. For practical applications, optical interfaces that feature low fiber-to-chip coupling losses are essential. So far, the fiber-to-chip loss (commonly > 10 dB) dominates the total insertion losses of typical LN photonic integrated circuits, where on-chip propagation losses can be as low as 0.03 - 0.1 dB/cm. Here we experimentally demonstrate a low-loss mode size converter for coupling between a standard lensed fiber and sub-micrometer LN rib waveguides. The coupler consists of two inverse tapers that convert the small optical mode of a rib waveguide into a symmetric guided mode of a LN nanowire, featuring a larger mode area matched to that of a tapered optical fiber. The measured fiber-to-chip coupling loss is lower than 1.7 dB/facet with high fabrication tolerance and repeatability. Our results open door for practical integrated LN photonic circuits efficiently interfaced with optical fibers.
We demonstrate significantly improved performance of a microwave true time delay line (TTDL) based on an integrated micro-ring resonator (MRR) Kerr optical comb source with a channel spacing of 49GHz, corresponding to 81 channels over the C-band. The broadband microcomb, with a record low free spectral range of 49GHz, results in a large number of comb lines for the TTDL, greatly reducing the size, cost, and complexity of the system. The large channel count results in a high angular resolution and wide beam steering tunable range of the phased array antenna (PAA). The enhancement of PAA performance matches well with theory, corroborating the feasibility of our approach as a competitive solution towards implementing compact low-cost TTDL in radar and communications systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا