ﻻ يوجد ملخص باللغة العربية
We study a Y junction of spin-1/2 Heisenberg chains with an interaction that breaks both time-reversal and chain exchange symmetries, but not their product nor SU(2) symmetry. The boundary phase diagram features a stable disconnected fixed point at weak coupling and a stable three-channel Kondo fixed point at strong coupling, separated by an unstable chiral fixed point at intermediate coupling. Using non-abelian bosonization and boundary conformal field theory, together with density matrix renormalization group and quantum Monte Carlo simulations, we characterize the signatures of these low-energy fixed points. In particular, we address the boundary entropy, the spin conductance and the temperature dependence of the scalar spin chirality and the magnetic susceptibility at the boundary.
We derive the topological Kondo Hamiltonian describing a Y junction of three XX-spin chains connected to outer quantum Ising chains with different tilting angles for the Ising axis. We show that the tilting angles in the spin models play the role o
We show that a quantum spin circulator, a nonreciprocal device that routes spin currents without any charge transport, can be achieved in Y junctions of identical spin-$1/2$ Heisenberg chains coupled by a chiral three-spin interaction. Using bosoniza
We describe a coupled-chain construction for chiral spin liquids in two-dimensional spin systems. Starting from a one-dimensional zigzag spin chain and imposing SU(2) symmetry in the framework of non-Abelian bosonization, we first show that our appro
We calculate the conductances of a three-terminal junction set-up of spinless Luttinger liquid wires threaded by a magnetic flux, allowing for different interaction strength g_3 != g in the third wire. We employ the fermionic representation in the sc
By means of a numerical analysis using a non-Abelian symmetry realization of the density matrix renormalization group, we study the behavior of vector chirality correlations in isotropic frustrated chains of spin S=1 and S=1/2, subject to a strong ex