ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for the Origin of Flares in M dwarfs

68   0   0.0 ( 0 )
 نشر من قبل Lauren Doyle
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an overview of K2 short cadence observations for 34 M dwarfs observed in Campaigns 1 - 9 which have spectral types between M0 - L1. All of the stars in our sample showed flares with the most energetic reaching $3times10^{34}$ ergs. As previous studies have found, we find rapidly rotating stars tend to show more flares, with evidence for a decline in activity in stars with rotation periods longer than approximately 10 days. We determined the rotational phase of each flare and performed a simple statistical test on our sample to determine whether the phase distribution of the flares is random or if there is a preference for phase. We find, with the exception of one star which is in a known binary system, that none show a preference for the rotational phase of the flares. This is unexpected and all stars in our sample show flares at all rotational phases, suggesting these flares are not all originating from one dominant starspot on the surface of the stars. We outline three scenarios which could explain the lack of a correlation between the number of flares and the stellar rotation phase. In addition we also highlight preliminary observations of DP Cnc, observed in campaigns 16 and 18, and is one of the stars in our extended sample from K2 Campaigns 10 -18 which are still to be examined.



قيم البحث

اقرأ أيضاً

162 - L. Doyle , G. Ramsay , J. G. Doyle 2019
Detailed studies of the Sun have shown that sunspots and solar flares are closely correlated. Photometric data from Kepler/K2 has allowed similar studies to be carried out on other stars. Here, we utilise TESS photometric 2-min cadence of 167 low mas s stars from Sectors 1 - 3 to investigate the relationship between starspots and stellar flares. From our sample, 90 percent show clear rotational modulation likely due to the presence of a large, dominant starspot and we use this to determine a rotational period for each star. Additionally, each low mass star shows one or more flares in its lightcurve and using Gaia DR2 parallaxes and SkyMapper magnitudes we can estimate the energy of the flares in the TESS band-pass. Overall, we have 1834 flares from the 167 low mass stars with energies from $6.0times 10^{29}$ - $2.4times 10^{35}$~erg. We find none of the stars in our sample show any preference for rotational phase suggesting the lack of a correlation between the large, dominant star spot and flare number. We discuss this finding in greater detail and present further scenarios to account for the origin of flares on these low mass stars.
The All-Sky Automated Survey for Supernovae (ASAS-SN) is the only project in existence to scan the entire sky in optical light every $sim$day, reaching a depth of $gsim18$ mag. Over the course of its first four years of transient alerts (2013-2016), ASAS-SN observed 53 events classified as likely M dwarf flares. We present follow-up photometry and spectroscopy of all 53 candidates, confirming flare events on 47 M dwarfs, one K dwarf, and one L dwarf. The remaining four objects include a previously identified TT Tauri star, a young star with outbursts, and two objects too faint to confirm. A detailed examination of the 49 flare star light curves revealed an additional six flares on five stars, resulting in a total of 55 flares on 49 objects ranging in $V$-band contrast from $Delta V = -1$ to $-10.2$ mags. Using an empirical flare model to estimate the unobserved portions of the flare light curve, we obtain lower limits on the $V$-band energy emitted during each flare, spanning $log(E_V/{rm ergs})=32$ to $35$, which are among the most energetic flares detected on M dwarfs. The ASAS-SN M-dwarf flare stars show a higher fraction of H$alpha$ emission as well as stronger H$alpha$ emission compared to M dwarfs selected without reference to activity, consistent with belonging to a population of more magnetically active stars. We also examined the distribution of tangential velocities, finding that the ASAS-SN flaring M dwarfs are likely to be members of the thin disk and are neither particularly young nor old.
We analyzed Kepler short-cadence M dwarf observations. Spectra from the ARC 3.5m telescope identify magnetically active (H$alpha$ in emission) stars. The active stars are of mid-M spectral type, have numerous flares, and well-defined rotational modul ation due to starspots. The inactive stars are of early-M type, exhibit less starspot signature, and have fewer flares. A Kepler to U-band energy scaling allows comparison of the Kepler flare frequency distributions with previous ground-based data. M dwarfs span a large range of flare frequency and energy, blurring the distinction between active and inactive stars designated solely by the presence of H$alpha$. We analyzed classical and complex (multiple peak) flares on GJ 1243, finding strong correlations between flare energy, amplitude, duration and decay time, with only a weak dependence on rise time. Complex flares last longer and have higher energy at the same amplitude, and higher energy flares are more likely to be complex. A power law fits the energy distribution for flares with log $E_{K_p} >$ 31 ergs, but the predicted number of low energy flares far exceeds the number observed, at energies where flares are still easily detectable, indicating that the power law distribution may flatten at low energy. There is no correlation of flare occurrence or energy with starspot phase; the flare waiting time distribution is consistent with flares occurring randomly in time; and the energies of consecutive flares are uncorrelated. These observations support a scenario where many independent active regions on the stellar surface are contributing to the observed flare rate.
83 - L.Doyle , G. Ramsay , J.G. Doyle 2018
We present an analysis of K2 short cadence data of 34 M dwarfs which have spectral types in the range M0 - L1. Of these stars, 31 showed flares with a duration between $sim$10-90 min. Using distances obtained from Gaia DR2 parallaxes, we determined t he energy of the flares to be in the range $sim1.2times10^{29}-6times10^{34}$ erg. In agreement with previous studies we find rapidly rotating stars tend to show more flares, with evidence for a decline in activity in stars with rotation periods longer than $sim$10 days. The rotational modulation seen in M dwarf stars is widely considered to result from a starspot which rotates in and out of view. Flux minimum is therefore the rotation phase where we view the main starspot close to the stellar disk center. Surprisingly, having determined the rotational phase of each flare in our study we find none show any preference for rotational phase. We outline three scenarios which could account for this unexpected finding. The relationship between rotation phase and flare rate will be explored further using data from wide surveys such as NGTS and TESS.
We searched for isolated planetary-mass T-dwarfs in the 3Myr old Serpens Core cluster. We performed a deep imaging survey of the central part of this cluster using the WIRCam camera at the CFHT. Observations were performed through the narrow-band CH4 _off and CH4_on filters, to identify young T-dwarfs from their 1.6micr methane absorption bands, and the broad-band JHK filters, to better characterize the selected candidates. We complemented our WIRCam photometry with optical imaging data from MegaCam at CFHT and Suprime-Cam at the Subaru telescope and mid-IR flux measurements from the Spitzer c2d Legacy Survey. We report four faint T-dwarf candidates in the direction of the Serpens Core with CH4_on-CH4_off above 0.2 mag, estimated visual extinction in the range 1-9 mag and spectral type in the range T1-T5 based on their dereddened CH4_on-CH4_off colors. Comparisons with T-dwarf spectral models and optical to mid-IR color-color and color-magnitude diagrams, indicate that two of our candidates (ID1 and 2) are background contaminants (most likely heavily reddened low-redshift quasars). The properties of the other two candidates (ID3 and 4) are consistent with them being young members of the Serpens Core cluster, although our analysis can not be considered conclusive. In particular, ID3 may also be a foreground T-dwarf. It is detected by the Spitzer c2d survey but only flux upper limits are available above 5.8 microns and, hence, we can not assess the presence of a possible disk around this object. However, it presents some similarities with other young T-dwarf candidates (SOri70 in the Sigma Ori cluster and CFHTJ0344+3206 in the direction of IC348). If ID3 and 4 belong to Serpens, they would have a mass of a few Jupiter masses and would be amongst the youngest, lowest mass objects detected in a star-forming region so far.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا