ترغب بنشر مسار تعليمي؟ اضغط هنا

High Kinetic Inductance Microwave Resonators Made by He-Beam Assisted Deposition of Tungsten Nanowires

435   0   0.0 ( 0 )
 نشر من قبل Julien Basset
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We evaluate the performance of hybrid microwave resonators made by combining sputtered Nb thin films with Tungsten nanowires grown with a He-beam induced deposition technique. Depending on growth conditions the nanowires have a typical width $win[35-75]$~nm and thickness $tin[5-40]$~nm. We observe a high normal state resistance $R_{sq}in [65-150]$ $Omega/sq$ which together with a critical temperature $T_cin[4-6]~K$ ensure a high kinetic inductance making the resonator strongly nonlinear. Both lumped and coplanar waveguide resonators were fabricated and measured at low temperature exhibiting internal quality factors up to $3990$ at $4.5$~GHz in the few photon regime. Analyzing the wire length, temperature and microwave power dependence we extracted a kinetic inductance for the W nanowire of $L_Kapprox15$ pH/sq, which is 250 times higher than the geometrical inductance, and a Kerr non-linearity as high as $K_{W,He}/2pi=200 pm 120$~Hz/photon at $4.5$~GHz. The nanowires made with the helium focused ion beam are thus versatile objects to engineer compact, high impedance, superconducting environments with a mask and resist free direct write process.



قيم البحث

اقرأ أيضاً

Superconducting nanowires can be fabricated by decomposition of an organometallic gas using a focused beam of Ga ions. However, physical damage and unintentional doping often results from the exposure to the ion beam, motivating the search for a mean s to achieve similar structures with a beam of electrons instead of ions. This has so far remained an experimental challenge. We report the fabrication of superconducting tungsten nanowires by electron-beam-induced-deposition, with critical temperature of 2.0 K and critical magnetic field of 3.7 T, and compare them with superconducting wires made with ions. This work opens up new possibilities for the realization of nanoscale superconducting devices, without the requirement of an ion beam column.
We demonstrate that a high kinetic inductance disordered superconductor can realize a low microwave loss, non-dissipative circuit element with an impedance greater than the quantum resistance ($R_Q = h/4e^2 simeq 6.5kOmega$). This element, known as a superinductor, can produce a quantum circuit where charge fluctuations are suppressed. The superinductor consists of a 40 nm wide niobium nitride nanowire and exhibits a single photon quality factor of $2.5 times 10^4$. Furthermore, by examining loss rates, we demonstrate that the dissipation of our nanowire devices can be fully understood in the framework of two-level system loss.
Investigations into the microwave surface impedance of superconducting resonators have led to the development of single photon counters that rely on kinetic inductance for their operation. While concurrent progress in additive manufacturing, `3D prin ting, opens up a previously inaccessible design space for waveguide resonators. In this manuscript, we present results from the first synthesis of these two technologies in a titanium, aluminum, vanadium (Ti-6Al-4V) superconducting radio frequency resonator which exploits a design unattainable through conventional fabrication means. We find that Ti-6Al-4V has two distinct superconducting transition temperatures observable in heat capacity measurements. The higher transition temperature is in agreement with DC resistance measurements. While the lower transition temperature, not previously known in literature, is consistent with the observed temperature dependence of the superconducting microwave surface impedance. From the surface reactance, we extract a London penetration depth of $8pm3{mu}$m - roughly an order of magnitude larger than other titanium alloys and several orders of magnitude larger than other conventional elemental superconductors. This large London penetration depth suggests that Ti-6Al-4V may be a suitable material for high kinetic inductance applications such as single photon counting or parametric amplification used in quantum computing.
We report development and microwave characterization of rf SQUID (Superconducting QUantum Interference Device) qubits, consisting of an aluminium-based Josephson junction embedded in a superconducting loop patterned from a thin film of TiN with high kinetic inductance. Here we demonstrate that the systems can offer small physical size, high anharmonicity, and small scatter of device parameters. The hybrid devices can be utilized as tools to shed further light onto the origin of film dissipation and decoherence in phase-slip nanowire qubits, patterned entirely from disordered superconducting films.
74 - E. S. Sadki , S. Ooi , K. Hirata 2004
Superconducting nanowires, with a critical temperature of 5.2 K, have been synthesized using an ion-beam-induced deposition, with a Gallium focused ion beam and Tungsten Carboxyl, W(CO)6, as precursor. The films are amorphous, with atomic concentrati ons of about 40, 40, and 20 % for W, C, and Ga, respectively. Zero Kelvin values of the upper critical field and coherence length of 9.5 T and 5.9 nm, respectively, are deduced from the resistivity data at different applied magnetic fields. The critical current density is Jc= 1.5 10^5 A/cm2 at 3 K. This technique can be used as a template-free fabrication method for superconducting devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا