ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of arbitrary all-photonic graph states from quantum emitters

127   0   0.0 ( 0 )
 نشر من قبل Antonio Russo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present protocols to generate arbitrary photonic graph states from quantum emitters that are in principle deterministic. We focus primarily on two-dimensional cluster states of arbitrary size due to their importance for measurement-based quantum computing. Our protocols for these and many other types of two-dimensional graph states require a linear array of emitters in which each emitter can be controllably pumped, rotated about certain axes, and entangled with its nearest neighbors. We show that an error on one emitter produces a localized region of errors in the resulting graph state, where the size of the region is determined by the coordination number of the graph. We describe how these protocols can be implemented for different types of emitters, including trapped ions, quantum dots, and nitrogen-vacancy centers in diamond.


قيم البحث

اقرأ أيضاً

A scheme to utilize atom-like emitters coupled to nanophotonic waveguides is proposed for the generation of many-body entangled states and for the reversible mapping of these states of matter to photonic states of an optical pulse in the waveguide. O ur protocol makes use of decoherence-free subspaces (DFS) for the atomic emitters with coherent evolution within the DFS enforced by strong dissipative coupling to the waveguide. By switching from subradiant to superradiant states, entangled atomic states are mapped to photonic states with high fidelity. An implementation using ultracold atoms coupled to a photonic crystal waveguide is discussed.
Quantum states superposed across multiple particles or degrees of freedom are of crucial importance for the development of quantum technologies. Creating these states deterministically and with high effciency is an ongoing challenge. A promising appr oach is the repeated excitation of multi-level quantum emitters, which have been shown to naturally generate light with quantum statistics. Here we describe how to create one class of higher dimensional quantum state, a so called W-state, which is superposed across multiple time bins. We do this by repeated Raman scattering of photons from a charged quantum dot in a pillar microcavity. We show this method can be scaled to larger dimensions with no reduction in coherence or single photon character. We explain how to extend this work to enable the deterministic creation of arbitrary time-bin encoded qudits.
We propose a circuit QED platform and protocol to deterministically generate microwave photonic tensor network states. We first show that using a microwave cavity as ancilla and a transmon qubit as emitter is a favorable platform to produce photonic matrix-product states. The ancilla cavity combines a large controllable Hilbert space with a long coherence time, which we predict translates into a high number of entangled photons and states with a high bond dimension. Going beyond this paradigm, we then consider a natural generalization of this platform, in which several cavity--qubit pairs are coupled to form a chain. The photonic states thus produced feature a two-dimensional entanglement structure and are readily interpreted as $textit{radial plaquette}$ projected entangled pair states, which include many paradigmatic states, such as the broad class of isometric tensor network states, graph states, string-net states.
We show how one can deterministically generate photonic matrix product states with high bond and physical dimensions with an atomic array if one has access to a Rydberg-blockade mechanism. We develop both a quantum gate and an optimal control approac h to universally control the system and analyze the photon retrieval efficiency of atomic arrays. Comprehensive modeling of the system shows that our scheme is capable of generating a large number of entangled photons. We further develop a multi-port photon emission approach that can efficiently distribute entangled photons into free space in several directions, which can become a useful tool in future quantum networks.
A silicon quantum photonic circuit was proposed and demonstrated as an integrated quantum light source for telecom band polarization entangled Bell state generation and dynamical manipulation. Biphoton states were firstly generated in four silicon wa veguides by spontaneous four wave mixing. They were transformed to polarization entangled Bell states through on-chip quantum interference and quantum superposition, and then coupled to optical fibers. The property of polarization entanglement in generated photon pairs was demonstrated by two-photon interferences under two non-orthogonal polarization bases. The output state could be dynamically switched between two polarization entangled Bell states, which was demonstrated by the experiment of simplified Bell state measurement. The experiment results indicate that its manipulation speed supported a modulation rate of several tens kHz, showing its potential on applications of quantum communication and quantum information processing requiring dynamical quantum entangled Bell state control.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا