ﻻ يوجد ملخص باللغة العربية
Herschel observations have emphasized the role of molecular filaments in star formation. However, the origin and evolution of these filaments are not yet well understood, partly because of the lack of kinematic information. To examine whether the B211/B213 filament is accreting background gas due to its gravitational potential, we produced a toy accretion model and compared its predictions to the 12CO(1--0) and 13CO(1--0) velocity patterns. We also examined the spatial distributions of Halpha, 857 GHz continuum, and HI emission to search for evidence of large-scale external effects. We estimated the depth of the cloud around the B211/B213 filament to be 0.3--0.7 pc under the assumption that the density of the gas is the same as the 13CO critical density. Compared to a linear extent of >10 pc in the plane of the sky, this suggests that the 3D morphology of the cloud is sheet-like. 12CO and 13CO PV diagrams perpendicular to the filament axis show that the emission from the gas surrounding B211/B213 is redshifted to the northeast of the filament and blueshifted to the southwest, respectively, and that the velocities of both components approach the filament velocity as the line of sight approaches the filament crest. The PV diagrams predicted by our accretion model are in good agreement with the observed 12CO and 13CO PV diagrams, supporting the scenario of mass accretion into the filament proposed by Palmeirim et al. Moreover, inspection of the distribution of the Halpha and 857 GHz emission in the Taurus-California-Perseus region suggests that the B211/B213 filament may have formed as a result of an expanding supershell generated by the Per OB2 association. Based on these results, we propose a scenario in which the B211/B213 filament was initially formed by large-scale compression of HI gas and then is now growing in mass due to the gravitational accretion of ambient cloud molecular gas.
(Abridged) We study the kinematics of the dense gas in the Taurus L1495/B213 filamentary region to investigate the mechanism of core formation. We use observations of N2H+(1-0) and C18O(2-1) carried out with the IRAM 30m telescope. We find that the d
We study four lines of sight that probe the transition from diffuse molecular gas to molecular cloud material in Taurus. Measurements of atomic and molecular absorption are used to infer the distribution of species and the physical conditions toward
The optical and near-infrared (OIR) polarization of starlight is typically understood to arise from the dichroic extinction of that light by dust grains whose axes are aligned with respect to a local magnetic-field. The size distribution of the align
(Abridged) Context. Core condensation is a critical step in the star-formation process, but is still poorly characterized observationally. Aims. We have studied the 10 pc-long L1495/B213 complex in Taurus to investigate how dense cores have condensed
Context. Dense molecular filaments are ubiquituous in the interstellar medium, yet their internal physical conditions and formation mechanism remain debated. Aims. We study the kinematics and physical conditions in the Musca filament and the Chamaele