ﻻ يوجد ملخص باللغة العربية
We show the results of two-terminal and four-terminal transport measurements on few-layer NbSe$_2$ devices at large current bias. In all the samples measured, transport characteristics at high bias are dominated by a series of resistance jumps due to nucleation of phase slip lines, the two dimensional analogue of phase slip centers. In point contact devices the relatively simple and homogeneous geometry enables a quantitative comparison with the model of Skocpol, Beasley and Tinkham. In extended crystals the nucleation of a single phase slip line can be induced by mechanical stress of a region whose width is comparable to the charge imbalance equilibration length.
Two-dimensional transition metal dichalcogenides (TMDs) have been attracting significant interest due to a range of properties, such as layer-dependent inversion symmetry, valley-contrasted Berry curvatures, and strong spin-orbit coupling (SOC). Of p
Tunnel junctions, a well-established platform for high-resolution spectroscopy of superconductors, require defect-free insulating barriers with clean engagement to metals on both sides. Extending the range of materials accessible to tunnel junction f
Time reversal and spatial inversion are two key symmetries for conventional Bardeen-Cooper-Schrieffer (BCS) superconductivity. Breaking inversion symmetry can lead to mixed-parity Cooper pairing and unconventional superconducting properties. Two-dime
We present the first observation of dynamically modulated quantum phase transition (QPT) between two distinct charge density wave (CDW) phases in 2-dimensional 2H-NbSe$_2$. There is recent spectroscopic evidence for the presence of these two quantum
Two-dimensional transition metal dichalcogenides with strong spin-orbit interactions and valley-dependent Berry curvature effects have attracted tremendous recent interests. Although novel single-particle and excitonic phenomena related to spin-valle