ترغب بنشر مسار تعليمي؟ اضغط هنا

Pion and Kaon Distribution Amplitudes from lattice QCD: towards the continuum limit

78   0   0.0 ( 0 )
 نشر من قبل Piotr Korcyl
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the current status of a non-perturbative lattice calculation of the moments of the pion and kaon distribution amplitudes by the RQCD collaboration. Our investigation is carried out using $N_f=2+1$ dynamical, non-perturbatively O(a)-improved Wilson fermions on the CLS ensembles with 5 different lattice spacings and pion masses down to the physical pion mass. A combined continuum and chiral extrapolation to the physical point is performed along two independent quark mass trajectories simultaneously. We employ momentum smearing in order to decrease the contamination by excited states and increase statistical precision.



قيم البحث

اقرأ أيضاً

We present a lattice-QCD calculation of the pion, kaon and $eta_s$ distribution amplitudes using large-momentum effective theory (LaMET). Our calculation is carried out using three ensembles with 2+1+1 flavors of highly improved staggered quarks (HIS Q), generated by MILC collaboration, at 310 MeV pion mass with 0.06, 0.09 and 0.12 fm lattice spacings. We use clover fermion action for the valence quarks and tune the quark mass to match the lightest light and strange masses in the sea. The resulting lattice matrix elements are nonperturbatively renormalized in regularization-independent momentum-subtraction (RI/MOM) scheme and extrapolated to the continuum. We use two approaches to extract the $x$-dependence of the meson distribution amplitudes: 1) we fit the renormalized matrix elements in coordinate space to an assumed distribution form through a one-loop matching kernel; 2) we use a machine-learning algorithm trained on pseudo lattice-QCD data to make predictions on the lattice data. We found the results are consistent between these methods with the latter method giving a less smooth shape. Both approaches suggest that as the quark mass increases, the distribution amplitude becomes narrower. Our pion distribution amplitude has broader distribution than predicted by light-front constituent-quark model, and the moments of our pion distributions agree with previous lattice-QCD results using the operator production expansion.
We present a lattice-QCD calculation of the pion distribution amplitudes using large-momentum effective theory (LaMET). Our calculation is carried out using five ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ), generated by MI LC collaboration, at 310 MeV and 220 MeV pion mass with 0.06, 0.09, 0.12 and 0.15 fm lattice spacings. We use clover fermion action for the valence quarks and tune the quark mass to match the lightest light and strange masses in the sea. The resulting lattice matrix elements are nonperturbatively renormalized in regularization-independent momentum-subtraction (RI/MOM) scheme and extrapolated to the continuum. We compare different approaches to extract the x-dependence of the pion distribution amplitudes.
We present the first lattice-QCD calculation of the kaon valence-quark distribution functions using the large-momentum effective theory (LaMET) approach. The calculation is performed with multiple pion masses with the lightest one around 220 MeV, 2 l attice spacings $a=0.06$ and 0.12 fm, $(M_pi)_text{min} L approx 5.5$, and high statistics ranging from 11,600 to 61,312 measurements. We also calculate the valence-quark distribution of pion and find it to be consistent with the FNAL E615 experimental results, and our ratio of the $u$ quark PDF in the kaon to that in the pion agrees with the CERN NA3 experiment. We also make predictions of the strange-quark distribution of the kaon.
We present a high-statistics lattice QCD determination of the valence parton distribution function (PDF) of the pion, with a mass of 300 MeV, using two very fine lattice spacings of $a=0.06$ fm and 0.04 fm. We reconstruct the $x$-dependent PDF, as we ll as infer the first few even moments of the PDF using leading-twist 1-loop perturbative matching framework. Our analyses use both RI-MOM and ratio-based schemes to renormalize the equal-time bi-local quark-bilinear matrix elements of pions boosted up to 2.4 GeV momenta. We use various model-independent and model-dependent analyses to infer the large-$x$ behavior of the valence PDF. We also present technical studies on lattice spacing and higher-twist corrections present in the boosted pion matrix elements.
We report on recent results for the pion matrix element of the twist-2 operator corresponding to the average momentum of non-singlet quark densities. For the first time finite volume effects of this matrix element are investigated and come out to be surprisingly large. We use standard Wilson and non-perturbatively improved clover actions in order to control better the extrapolation to the continuum limit. Moreover, we compute, fully non-perturbatively, the renormalization group invariant matrix element, which allows a comparison with experimental results in a broad range of energy scales. Finally, we discuss the remaining uncertainties, the extrapolation to the chiral limit and the quenched approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا