ﻻ يوجد ملخص باللغة العربية
We present high spatial resolution LBTI/NOMIC $9-12$ $mu m$ images of VY CMa and its massive outflow feature, the Southwest (SW) Clump. Combined with high-resolution imaging from HST ($0.4-1$ $mu m$) and LBT/LMIRCam ($1-5$ $mu m$), we isolate the spectral energy distribution (SED) of the clump from the star itself. Using radiative-transfer code DUSTY, we model both the scattered light from VY CMa and the thermal emission from the dust in the clump to estimate the optical depth, mass, and temperature of the SW Clump. The SW Clump is optically thick at 8.9 $mu m$ with a brightness temperature of $sim$200 K. With a dust chemistry of equal parts silicates and metallic iron, as well as assumptions on grain size distribution, we estimate a dust mass of $5.4times10^{-5},M_odot$. For a gas--to--dust ratio of 100, this implies a total mass of $5.4times10^{-3},M_odot$. Compared to the typical mass-loss rate of VY CMa, the SW Clump represents an extreme, localized mass-loss event from $lesssim300$ years ago.
We use Atacama Large Millimeter/submillimeter Array Band 5 science verification observations of the red supergiant VY CMa to study the polarization of SiO thermal/masers lines and dust continuum at ~1.7 mm wavelength. We analyse both linear and circu
Imaging and spectroscopy of the knots, clumps, and extended arcs in the complex ejecta of VY CMa confirm a record of high mass loss events over the past few hundred years. HST/STIS spectroscopy of numerous small knots close to the star allow us to me
(abreviated) We aim to study the inner-wind structure (R<250 Rstar) of the well-known red supergiant VY CMa. We analyse high spatial resolution (~0.24x0.13) ALMA Science Verification (SV) data in band 7 in which four thermal emission lines of gaseous
With a luminosity > 10^5 Lsun and a mass-loss rate of about 2.10-4 Msun/yr, the red supergiant VY CMa truly is a spectacular object. Because of its extreme evolutionary state, it could explode as supernova any time. Studying its circumstellar materia
HST/STIS spectra of the small clumps and filaments closest to the central star in VY CMa reveal that the very strong K I emission and TiO and VO molecular emission, long thought to form in a dusty circumstellar shell, actually originate in a few smal