ﻻ يوجد ملخص باللغة العربية
At a distance of 1.8 parsecs, Barnards star (Gl 699) is a red dwarf with the largest apparent motion of any known stellar object. It is the closest single star to the Sun, second only to the alpha Centauri triple stellar system. Barnards star is also among the least magnetically active red dwarfs known and has an estimated age older than our Solar System. Its properties have made it a prime target for planet searches employing techniques such as radial velocity, astrometry, and direct imaging, all with different sensitivity limits but ultimately leading to disproved or null results. Here we report that the combination of numerous measurements from high-precision radial velocity instruments reveals the presence of a low-amplitude but significant periodic signal at 233 days. Independent photometric and spectroscopic monitoring, as well as the analysis of instrumental systematic effects, show that this signal is best explained as arising from a planetary companion. The candidate planet around Barnards star is a cold super-Earth with a minimum mass of 3.2 Earth masses orbiting near its snow-line. The combination of all radial velocity datasets spanning 20 years additionally reveals a long-term modulation that could arise from a magnetic activity cycle or from a more distant planetary object. Because of its proximity to the Sun, the proposed planet has a maximum angular separation of 220 milli-arcseconds from Barnards star, making it an excellent target for complementary direct imaging and astrometric observations.
We present the discovery of a super-earth-sized planet in or near the habitable zone of a sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the three-year flux time series of Kepler-69,
We aim to find missing microlensing planets hidden in the unanalyzed lensing events of previous survey data. For this purpose, we conduct a systematic inspection of high-magnification microlensing events, with peak magnifications $A_{rm peak}gtrsim 3
BD+20 1790 is a young active, metal-rich, late-type K5Ve star. We have undertaken a study of stellar activity and kinematics for this star over the past few years. Previous results show a high level of stellar activity, with the presence of prominenc
We report the confirmation of a transiting planet around the bright, inactive M0.5 V star TOI-1235 (TYC 4384-1735-1, V = 11.5 mag), whose transit signal was detected in the photometric time series of Sectors 14, 20, and 21 of the TESS space mission.
We report on the confirmation and mass determination of Pi Men c, the first transiting planet discovered by NASAs TESS space mission. Pi Men is a naked-eye (V=5.65 mag), quiet G0 V star that was previously known to host a sub-stellar companion (Pi Me