ترغب بنشر مسار تعليمي؟ اضغط هنا

$R$-parity Violating Decays of Wino Chargino and Wino Neutralino LSPs and NLSPs at the LHC

74   0   0.0 ( 0 )
 نشر من قبل Sebastian Dumitru
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The $R$-parity violating decays of both Wino chargino and Wino neutralino LSPs are analyzed within the context of the $B-L$ MSSM heterotic standard model. These LSPs correspond to statistically determined initial soft supersymmetry breaking parameters which, when evolved using the renormalization group equations, lead to an effective theory satisfying all phenomenological requirements; including the observed electroweak vector boson and Higgs masses. The explicit decay channels of these LSPs into standard model particles, the analytic and numerical decay rates and the associated branching ratios are presented. The decay lengths of these RPV interactions are discussed. It is shown that the vast majority of these decays are prompt, although a small, but calculable, number correspond to displaced vertices of various lengths. It is demonstrated that for a Wino chargino LSP, the NLSP is the Wino neutralino with a mass only slightly higher than the LSP-- and vice-versa. As a consequence, we show that both the Wino chargino and Wino neutralino LSP/NLSP $R$-parity violating decays should be simultaneously observable at the CERN LHC.

قيم البحث

اقرأ أيضاً

The $R$-parity violating decays of Bino neutralino LSPs are analyzed within the context of the $B-L$ MSSM heterotic standard model. These LSPs correspond to statistically determined initial soft supersymmetry breaking parameters which, when evolved u sing the renormalization group equations, lead to an effective theory satisfying all phenomenological requirements; including the observed electroweak vector boson masses and the Higgs mass. The explicit RPV decay channels of these LSPs into standard model particles, the analytic and numerical decay rates and the associated branching ratios are presented. The analysis of these quantities breaks into two separate calculations; first, for Bino neutralino LSPs with mass larger than $M_{W^{pm}}$ and, second, when the Bino neutralino mass is smaller than the electroweak scale. The RPV decay processes in both of these regions is analyzed in detail. The decay lengths of these RPV interactions are discussed. It is shown that for heavy Bino neutralino LSPs the vast majority of these decays are prompt, although a small, but calculable, number correspond to displaced decays of various lengths. The situation is reversed for light Bino LSPs, only a small number of which can RPV decay promptly. The relation of these results to the neutrino hierarchy--either normal or inverted--is discussed in detail.
Recently there has been much interest in the use of single-jet mass and jet substructure to identify boosted particles decaying hadronically at the LHC. We develop these ideas to address the challenging case of a neutralino decaying to three quarks i n models with baryonic violation of R-parity. These decays have previously been found to be swamped by QCD backgrounds. We demonstrate for the first time that such a decay might be observed directly at the LHC with high significance, by exploiting characteristics of the scales at which its composite jet breaks up into subjets.
The scalar partner of the top quark (the stop) is relatively light in many models of supersymmetry breaking. We study the production of stops at the Large Hadron Collider (LHC) and their subsequent decays through baryon-number violating couplings suc h that the final state contains no leptons. A detailed analysis performed using detector level observables demonstrate that stop masses upto $sim 600 gev$ may be explored at the LHC depending on the branching ratios for such decays and the integrated luminosity available. Extended to other analogous scenarios, the analysis will, generically, probe even larger masses.
62 - G. Calucci , R. Iengo 2015
We propose to use the change of the energy lost by ionization, measured by silicon detectors, before and after the passage through a bulk of dense matter, for unambiguously detecting highly massive single-charged particles, which could be produced at LHC, in particular Winos with mass in the TeV range, whose c-tau is expected to be some cms long, although the method is also efficient for masses down to 10GeV. For convenience, a QED derivation of the modern version of the Bethe-Block formula is also provided.
We consider the case where supersymmetry with broken R-parity is embedded in the minimal supergravity model (mSUGRA). This alters the standard mSUGRA spectrum and opens a wide range in parameter space, where the scalar tau is the lightest supersymmet ric particle, instead of the lightest neutralino. We study the resulting LHC phenomenology. Promising signatures would be detached vertices from long-lived staus, multi lepton final states and multi-tau final states. We investigate in detail the corresponding cross sections and decay rates in characteristic benchmark scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا