ﻻ يوجد ملخص باللغة العربية
The quest for understanding the late-time acceleration is haunted by an immense freedom in the analysis of dynamical models for dark energy in extended parameter spaces. Often-times having no prior knowledge at our disposal, arbitrary choices are implemented to reduce the degeneracies between parameters. We also encounter this issue in the case of quintessence fields, where a scalar degree of freedom drives the late-time acceleration. In this study, we implement a more physical prescription, the textit{flow} condition, to fine-tune the quintessence evolution for several field potentials. We find that this prescription agrees well with the most recent catalogue of data, namely supernovae type Ia, baryon acoustic oscillations, cosmic clocks and distance to last scattering surface, and it enables us to infer the initial conditions for the field, both potential and cosmological parameters. At $2sigma$ we find stricter bounds on the potential parameters $f/m_{pl}>0.26$ and $n<0.15$ for the PNGB and IPL potentials, respectively, while constraints on cosmological parameters remain extremely consistent across all assumed potentials. By implementing information criteria to assess their ability to fit the data, we do not find any evidence against thawing models, which in fact are statistically equivalent to $Lambda$CDM, and the freezing ones are moderately disfavoured. Through our analysis we place upper bounds on the slope of quintessence potentials, consequently revealing a strong tension with the recently proposed swampland criterion, finding the 2$sigma$ upper bound of $lambda sim 0.31$ for the exponential potential.
The recent GW170817 measurement favors the simplest dark energy models, such as a single scalar field. Quintessence models can be classified in two classes, freezing and thawing, depending on whether the equation of state decreases towards $-1$ or de
We investigate cosmological models in which dynamical dark energy consists of a scalar field whose present-day value is controlled by a coupling to the neutrino sector. The behaviour of the scalar field depends on three functions: a kinetic function,
We investigate a class of dark energy models in which the equation of state undergoes a rapid transition and for which the Hubble SN Ia diagram is known to be poorly discriminant. Interestingly enough, we find that transitions at high redshift can le
We study the dynamical properties of tracker quintessence models using a general parametrization of their corresponding potentials, and show that there is a general condition for the appearance of a tracker behavior at early times. Likewise, we deter
We constrain the parameters of dynamical dark energy in the form of a classical or tachyonic scalar field with barotropic equation of state jointly with other cosmological ones using the combined datasets which include the CMB power spectra from WMAP