ﻻ يوجد ملخص باللغة العربية
Magnetic anisotropy is crucially important for the stabilization of two-dimensional (2D) magnetism, which is rare in nature but highly desirable in spintronics and for advancing fundamental knowledge. Recent works on CrI$_3$ and CrGeTe$_3$ monolayers not only led to observations of the long-time-sought 2D ferromagnetism, but also revealed distinct magnetic anisotropy in the two systems, namely Ising behavior for CrI$_3$ versus Heisenberg behavior for CrGeTe$_3$. Such magnetic difference strongly contrasts with structural and electronic similarities of these two materials, and understanding it at a microscopic scale should be of large benefits. Here, first-principles calculations are performed and analyzed to develop a simple Hamiltonian, to investigate magnetic anisotropy of CrI$_3$ and CrGeTe$_3$ monolayers. The anisotropic exchange coupling in both systems is surprisingly determined to be of Kitaev-type. Moreover, the interplay between this Kitaev interaction and single ion anisotropy (SIA) is found to naturally explain the different magnetic behaviors of CrI$_3$ and CrGeTe$_3$. Finally, both the Kitaev interaction and SIA are further found to be induced by spin-orbit coupling of the heavy ligands (I of CrI$_3$ or Te of CrGeTe$_3$) rather than the commonly believed 3d magnetic Cr ions.
Low-energy magnon excitations in multiferroic BiFeO$_3$ were measured in detail as a function of temperature around several Brillouin zone centers by inelastic neutron scattering experiments on single crystals. Unique features around 1 meV are direct
Microscopic origin of the ferromagnetic (FM) exchange coupling in CrCl$_3$ and CrI$_3$, their common aspects and differences, are investigated on the basis of density functional theory combined with realistic modeling approach for the analysis of int
We lay the foundation for determining the microscopic spin interactions in two-dimensional (2D) ferromagnets by combining angle-dependent ferromagnetic resonance (FMR) experiments on high quality CrI$_3$ single crystals with theoretical modeling base
The evolution of the electronic structure and magnetic properties with Co substitution for Fe in the solid solution Fe$_{1-x}$Co$_x$Ga$_3$ was studied by means of electrical resistivity, magnetization, ab-initio band structure calculations, and nucle
Using density functional theory (DFT) methods, we have calculated X-ray absorption spectroscopy (XAS) and X-ray circular dichroism (XMCD) spectra in bulk and thin films of Fe$_3$GeTe$_2$, CrI$_3$, and CrGeTe$_3$. DFT+$U$ methods are employed for bett