ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive stars with Pollux on LUVOIR

139   0   0.0 ( 0 )
 نشر من قبل Coralie Neiner
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many open questions remain about massive stars, for example about their evolution, their wind, and their maximum mass at formation. These issues could be ideally adressed by the Pollux UV spectropolarimeter onboard LUVOIR. Here we present examples of the science themes that one could study with Pollux regarding massive stars.

قيم البحث

اقرأ أيضاً

144 - Eduard Muslimov 2018
The present paper describes the current baseline optical design of POLLUX, a high-resolution spectropolarimeter for the future LUVOIR mission. The instrument will operate in the ultraviolet (UV) domain from 90 to 390 nm in both spectropolarimetric an d pure spectroscopic modes. The working range is split between 3 channels -- far (90-124.5 nm), medium (118.5-195 nm) and near (195-390 nm) UV. Each of the channels is composed of a polarimeter followed by an echelle spectrograph consisting of a classical off-axis paraboloid collimator, echelle grating with a high grooves frequency and a cross-disperser grating operating also as a camera. The latter component integrates some advanced technologies: it is a blazed grating with a complex grooves pattern formed by holographic recording, which is manufactured on a freeform surface. One of the key features underlying the current design is the large spectral length of each order ~6 nm, which allows to record wide spectral lines without any discontinuities. The modelling results show that the optical design will provide the required spectral resolving power higher than R ~ 120,000 over the entire working range for a point source object with angular size of 30 mas. It is also shown that with the 15-m primary mirror of the LUVOIR telescope the instrument will provide an effective collecting area up to 38 569 cm 2. Such a performance will allow to perform a number of groundbreaking scientific observations. Finally, the future work and the technological risks of the design are discussed in details.
The ultraviolet (UV) polarization spectrum of nearby active galactic nuclei (AGN) is poorly known. The Wisconsin Ultraviolet Photo-Polarimeter Experiment and a handful of instruments on board the Hubble Space Telescope were able to probe the near- an d mid-UV polarization of nearby AGN, but the far-UV band (from 1200 angs down to the Lyman limit at 912 angs) remains completely uncharted. In addition, the linewidth resolution of previous observations was at best 1.89 angs. Such a resolution is not sufficient to probe in detail quantum mechanical effects, synchrotron and cyclotron processes, scattering by electrons and dust grains, and dichroic extinction by asymmetric dust grains. Exploring those physical processes would require a new, high-resolution, broadband polarimeter with full ultraviolet-band coverage. In this context, we discuss the AGN science case for POLLUX, a high-resolution UV spectropolarimeter, proposed for the 15-meter primary mirror option of LUVOIR (a multi-wavelength space observatory concept being developed by the Goddard Space Flight Center and proposed for the 2020 Decadal Survey Concept Study).
Hot luminous stars show a variety of phenomena in their photospheres and winds which still lack clear physical explanation. Among these phenomena are photospheric turbulence, line profile variability (LPV), non-thermal emission, non-radial pulsations , discrete absorption components (DACs) and wind clumping. Cantiello et al. (2009) argued that a convection zone close to the stellar surface could be responsible for some of these phenomena. This convective zone is caused by a peak in the opacity associated with iron-group elements and is referred to as the iron convection zone (FeCZ). Assuming dynamo action producing magnetic fields at equipartition in the FeCZ, we investigate the occurrence of subsurface magnetism in OB stars. Then we study the surface emergence of these magnetic fields and discuss possible observational signatures of magnetic spots. Simple estimates are made using the subsurface properties of massive stars, as calculated in 1D stellar evolution models. We find that magnetic fields of sufficient amplitude to affect the wind could emerge at the surface via magnetic buoyancy. While at this stage it is difficult to predict the geometry of these features, we show that magnetic spots of size comparable to the local pressure scale height can manifest themselves as hot, bright spots. Localized magnetic fields could be widespread in those early type stars that have subsurface convection. This type of surface magnetism could be responsible for photometric variability and play a role in X-ray emission and wind clumping.
Olivier Chesneau challenged several fields of observational stellar astrophysics with bright ideas and an impressive amount of work to make them real in the span of his career, from his first paper on P Cygni in 2000, up to his last one on V838 Mon i n 2014. He was using all the so-called high-angular resolution techniques since it helped his science to be made, namely study in details the inner structure of the environments around stars, be it small mass (AGBs), more massive (supergiant stars), or explosives (Novae). I will focus here on his work on massive stars.
Stellar parameters of 25 planet-hosting stars and abundances of Li, C, O, Na, Mg, Al, S, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Zn, Y, Zr, Ba, Ce, Pr, Nd, Sm and Eu, were studied based on homogeneous high resolution spectra and uniform techniques. The ir on abundance [Fe/H] and key elements (Li, C, O, Mg, Si) indicative of the planet formation, as well as the dependencies of [El/Fe] on $T_{cond}$, were analyzed. The iron abundances determined in our sample stars with detected massive planets range within -0.3<[Fe/H]<0.4. The behaviour of [C/Fe], [O/Fe], [Mg/Fe] and [Si/Fe] relative to [Fe/H] is consistent with the Galactic Chemical Evolution trends. The mean values of C/O and [C/O] are <C/O>= 0.48 +/-0.07 and <[C/O]>=-0.07 +/-0.07, which are slightly lower than solar ones. The Mg/Si ratios range from 0.83 to 0.95 for four stars in our sample and from 1.0 to 1.86 for the remaining 21 stars. Various slopes of [El/Fe] vs. Tcond were found. The dependencies of the planetary mass on metallicity, the lithium abundance, the C/O and Mg/Si ratios, and also on the [El/Fe]-Tcond slopes were considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا