ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical forces from near-field directionalities in planar structures

70   0   0.0 ( 0 )
 نشر من قبل Jack Kingsley-Smith
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Matter manipulation with optical forces has become commonplace in a wide range of research fields and is epitomized by the optical trap. Calculations of optical forces on small illuminated particles typically neglect multiple scattering on nearby structures. However, this scattering can result in large recoil forces, particularly when the scattering includes directional near-field excitations. Near-field recoil forces have been studied in the case of electric, magnetic and circularly polarized dipoles, but they exist for any type of directional near-field excitation. We use the force angular spectrum as a concise and intuitive analytical expression for the force on any dipole near planar surfaces, which allows us to clearly distinguish the effect due to the dipole, and due to the surface. We relate this directly to the coupling efficiency of surface or guided modes via Fermis golden rule. To exemplify this, a near-field force transverse to the illumination is computationally calculated for a Huygens dipole near a metallic waveguide. We believe this formalism will prove insightful for various nanomanipulation systems within areas such as nanofluidics, sensing, biotechnology and nano-assembly of nanostructures.

قيم البحث

اقرأ أيضاً

345 - H. Nakamura 1999
The finite-difference time-domain (FDTD) method is employed to solve the three dimensional Maxwell equation for the situation of near-field microscopy using a sub-wavelength aperture. Experimental result on unexpected high spatial resolution is reproduced by our computer simulation.
We describe an efficient near-field to far-field transformation for optical quasinormal modes, which are the dissipative modes of open cavities and plasmonic resonators with complex eigenfrequencies. As an application of the theory, we show how one c an compute the reservoir modes (or regularized quasinormal modes) outside the resonator, which are essential to use in both classical and quantum optics. We subsequently demonstrate how to efficiently compute the quantum optical parameters necessary in the theory of quantized quasinormal modes [Franke et al., Phys. Rev. Lett. 122, 213901 (2019)]. To confirm the accuracy of our technique, we directly compare with a Dyson equation approach currently used in the literature (in regimes where this is possible), and demonstrate several order of magnitude improvement for the calculation run times. We also introduce an efficient pole approximation for computing the quantized quasinormal mode parameters, since they require an integration over a range of frequencies. Using this approach, we show how to compute regularized quasinormal modes and quantum optical parameters for a full 3D metal dimer in under one minute on a standard desktop computer. Our technique is exemplified by studying the quasinormal modes of metal dimers and a hybrid structure consisting of a gold dimer on top of a photonic crystal beam. In the latter example, we show how to compute the quantum optical parameters that describe a pronounced Fano resonance, using structural geometries that cannot practically be solved using a Dyson equation approach. All calculations for the spontaneous emission rates are confirmed with full-dipole calculations in Maxwells equations and are shown to be in excellent agreement.
68 - Nahid Talebi 2020
Strong interaction between light and matter waves, such as electron beams in electron microscopes, has recently emerged as a new tool for understanding entanglement. Here, we systematically investigate electron-light interactions from first principle s. We show that enhanced coupling can be achieved for systems involving slow electron wavepackets interacting with plasmonic nanoparticles, due to simultaneous classical recoil and quantum mechanical photon absorption and emission processes. For slow electrons with longitudinal broadenings longer than the dimensions of nanoparticles, phase-matching between slow electrons and plasmonic oscillations is manifested as an additional degree of freedom to control the strength of coupling. Our findings pave the way towards a systematic and realistic understanding of electron-light interactions beyond adiabatic approximations, and lay the ground for realization of entangled electron-photon systems and Boson-sampling devices involving light and matter waves.
Modern scattering-type scanning near-field optical microscopy (s-SNOM) has become an indispensable tool in material research. However, as the s-SNOM technique marches into the far-infrared (IR) and terahertz (THz) regimes, emerging experiments someti mes produce puzzling results. For example, anomalies in the near-field optical contrast have been widely reported. In this Letter, we systematically investigate a series of extreme subwavelength metallic nanostructures via s-SNOM near-field imaging in the GHz to THz frequency range. We find that the near-field material contrast is greatly impacted by the lateral size of the nanostructure, while the spatial resolution is practically independent of it. The contrast is also strongly affected by the connectivity of the metallic structures to a larger metallic ground plane. The observed effect can be largely explained by a quasi-electrostatic analysis. We also compare the THz s-SNOM results to those of the mid-IR regime, where the size-dependence becomes significant only for smaller structures. Our results reveal that the quantitative analysis of the near-field optical material contrasts in the long-wavelength regime requires a careful assessment of the size and configuration of metallic (optically conductive) structures.
We propose an optomechanical structure consisting of a photonic-crystal (holey) membrane suspended above a layered silicon-on-insulator substrate in which resonant bonding/antibonding optical forces created by externally incident light from above ena ble all-optical control and actuation of stiction effects induced by the Casimir force. In this way, one can control how the Casimir force is expressed in the mechanical dynamics of the membrane, not by changing the Casimir force directly but by optically modifying the geometry and counteracting the mechanical spring constant to bring the system in or out of regimes where Casimir physics dominate. The same optical response (reflection spectrum) of the membrane to the incident light can be exploited to accurately measure the effects of the Casimir force on the equilibrium separation of the membrane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا