ترغب بنشر مسار تعليمي؟ اضغط هنا

LookinGood: Enhancing Performance Capture with Real-time Neural Re-Rendering

149   0   0.0 ( 0 )
 نشر من قبل Ricardo Martin Brualla
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by augmented and virtual reality applications such as telepresence, there has been a recent focus in real-time performance capture of humans under motion. However, given the real-time constraint, these systems often suffer from artifacts in geometry and texture such as holes and noise in the final rendering, poor lighting, and low-resolution textures. We take the novel approach to augment such real-time performance capture systems with a deep architecture that takes a rendering from an arbitrary viewpoint, and jointly performs completion, super resolution, and denoising of the imagery in real-time. We call this approach neural (re-)rendering, and our live system LookinGood. Our deep architecture is trained to produce high resolution and high quality images from a coarse rendering in real-time. First, we propose a self-supervised training method that does not require manual ground-truth annotation. We contribute a specialized reconstruction error that uses semantic information to focus on relevant parts of the subject, e.g. the face. We also introduce a salient reweighing scheme of the loss function that is able to discard outliers. We specifically design the system for virtual and augmented reality headsets where the consistency between the left and right eye plays a crucial role in the final user experience. Finally, we generate temporally stable results by explicitly minimizing the difference between two consecutive frames. We tested the proposed system in two different scenarios: one involving a single RGB-D sensor, and upper body reconstruction of an actor, the second consisting of full body 360 degree capture. Through extensive experimentation, we demonstrate how our system generalizes across unseen sequences and subjects. The supplementary video is available at http://youtu.be/Md3tdAKoLGU.

قيم البحث

اقرأ أيضاً

We present the first approach to volumetric performance capture and novel-view rendering at real-time speed from monocular video, eliminating the need for expensive multi-view systems or cumbersome pre-acquisition of a personalized template model. Ou r system reconstructs a fully textured 3D human from each frame by leveraging Pixel-Aligned Implicit Function (PIFu). While PIFu achieves high-resolution reconstruction in a memory-efficient manner, its computationally expensive inference prevents us from deploying such a system for real-time applications. To this end, we propose a novel hierarchical surface localization algorithm and a direct rendering method without explicitly extracting surface meshes. By culling unnecessary regions for evaluation in a coarse-to-fine manner, we successfully accelerate the reconstruction by two orders of magnitude from the baseline without compromising the quality. Furthermore, we introduce an Online Hard Example Mining (OHEM) technique that effectively suppresses failure modes due to the rare occurrence of challenging examples. We adaptively update the sampling probability of the training data based on the current reconstruction accuracy, which effectively alleviates reconstruction artifacts. Our experiments and evaluations demonstrate the robustness of our system to various challenging angles, illuminations, poses, and clothing styles. We also show that our approach compares favorably with the state-of-the-art monocular performance capture. Our proposed approach removes the need for multi-view studio settings and enables a consumer-accessible solution for volumetric capture.
We introduce a method to render Neural Radiance Fields (NeRFs) in real time using PlenOctrees, an octree-based 3D representation which supports view-dependent effects. Our method can render 800x800 images at more than 150 FPS, which is over 3000 time s faster than conventional NeRFs. We do so without sacrificing quality while preserving the ability of NeRFs to perform free-viewpoint rendering of scenes with arbitrary geometry and view-dependent effects. Real-time performance is achieved by pre-tabulating the NeRF into a PlenOctree. In order to preserve view-dependent effects such as specularities, we factorize the appearance via closed-form spherical basis functions. Specifically, we show that it is possible to train NeRFs to predict a spherical harmonic representation of radiance, removing the viewing direction as an input to the neural network. Furthermore, we show that PlenOctrees can be directly optimized to further minimize the reconstruction loss, which leads to equal or better quality compared to competing methods. Moreover, this octree optimization step can be used to reduce the training time, as we no longer need to wait for the NeRF training to converge fully. Our real-time neural rendering approach may potentially enable new applications such as 6-DOF industrial and product visualizations, as well as next generation AR/VR systems. PlenOctrees are amenable to in-browser rendering as well; please visit the project page for the interactive online demo, as well as video and code: https://alexyu.net/plenoctrees
Neural signed distance functions (SDFs) are emerging as an effective representation for 3D shapes. State-of-the-art methods typically encode the SDF with a large, fixed-size neural network to approximate complex shapes with implicit surfaces. Renderi ng with these large networks is, however, computationally expensive since it requires many forward passes through the network for every pixel, making these representations impractical for real-time graphics. We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs, while achieving state-of-the-art geometry reconstruction quality. We represent implicit surfaces using an octree-based feature volume which adaptively fits shapes with multiple discrete levels of detail (LODs), and enables continuous LOD with SDF interpolation. We further develop an efficient algorithm to directly render our novel neural SDF representation in real-time by querying only the necessary LODs with sparse octree traversal. We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works. Furthermore, it produces state-of-the-art reconstruction quality for complex shapes under both 3D geometric and 2D image-space metrics.
Human re-rendering from a single image is a starkly under-constrained problem, and state-of-the-art algorithms often exhibit undesired artefacts, such as over-smoothing, unrealistic distortions of the body parts and garments, or implausible changes o f the texture. To address these challenges, we propose a new method for neural re-rendering of a human under a novel user-defined pose and viewpoint, given one input image. Our algorithm represents body pose and shape as a parametric mesh which can be reconstructed from a single image and easily reposed. Instead of a colour-based UV texture map, our approach further employs a learned high-dimensional UV feature map to encode appearance. This rich implicit representation captures detailed appearance variation across poses, viewpoints, person identities and clothing styles better than learned colour texture maps. The body model with the rendered feature maps is fed through a neural image-translation network that creates the final rendered colour image. The above components are combined in an end-to-end-trained neural network architecture that takes as input a source person image, and images of the parametric body model in the source pose and desired target pose. Experimental evaluation demonstrates that our approach produces higher quality single image re-rendering results than existing methods.
The recent research explosion around implicit neural representations, such as NeRF, shows that there is immense potential for implicitly storing high-quality scene and lighting information in compact neural networks. However, one major limitation pre venting the use of NeRF in real-time rendering applications is the prohibitive computational cost of excessive network evaluations along each view ray, requiring dozens of petaFLOPS. In this work, we bring compact neural representations closer to practical rendering of synthetic content in real-time applications, such as games and virtual reality. We show that the number of samples required for each view ray can be significantly reduced when samples are placed around surfaces in the scene without compromising image quality. To this end, we propose a depth oracle network that predicts ray sample locations for each view ray with a single network evaluation. We show that using a classification network around logarithmically discretized and spherically warped depth values is essential to encode surface locations rather than directly estimating depth. The combination of these techniques leads to DONeRF, our compact dual network design with a depth oracle network as its first step and a locally sampled shading network for ray accumulation. With DONeRF, we reduce the inference costs by up to 48x compared to NeRF when conditioning on available ground truth depth information. Compared to concurrent acceleration methods for raymarching-based neural representations, DONeRF does not require additional memory for explicit caching or acceleration structures, and can render interactively (20 frames per second) on a single GPU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا