ﻻ يوجد ملخص باللغة العربية
We consider a holographic description of the chiral symmetry breaking in an external magnetic field in $ (2+1) $-dimensional gauge theories from the softwall model using an improved dilaton field profile given by $Phi(z) = - kz^2 + (k+k_1)z^2tanh (k_{2}z^2)$. We find inverse magnetic catalysis for $B<B_c$ and magnetic catalysis for $B>B_c$, where $B_c$ is the pseudocritical magnetic field. The transition between these two regimes is a crossover and occurs at $B=B_c$, which depends on the fermion mass and temperature. We also find spontaneous chiral symmetry breaking (the chiral condensate $sigma ot=0$) at $T=0$ in the chiral limit ($m_qto 0$) and chiral symmetry restoration for finite temperatures. We observe that changing the $k$ parameter of the dilaton profile only affects the overall scales of the system such as $B_c$ and $sigma$. For instance, by increasing $k$ one sees an increase of $B_c$ and $sigma$. This suggests that increasing the parameters $k_1$ and $k_2$ will decrease the values of $B_c$ and $sigma$.
In this work we study finite density effects in spontaneous chiral symmetry breaking as well as chiral phase transition under the influence of a background magnetic field in $ 2+1 $ dimensions. For this purpose, we use an improved holographic softwal
Using the nonperturbative Schwinger-Dyson equation, we show that chiral symmetry is dynamically broken in QED at weak couplings when an external magnetic field is present, and that chiral symmetry is restored at temperatures above $T_c simeq alphapi^
Using two different models from holographic quantum chromodynamics (QCD) we study the deconfinement phase transition in $2+1$ dimensions in the presence of a magnetic field. Working in 2+1 dimensions lead us to {sl exact} solutions on the magnetic fi
We investigate non-linear extensions of the holographic soft wall model proposed by Karch, Katz, Son and Stephanov [1] including non-minimal couplings in the five-dimensional action. The non-minimal couplings bring a new parameter $a_0$ which control
The effects of an external field on the dynamics of chiral symmetry breaking are studied using quenched, ladder QED as our model gauge field theory. It is found that a uniform external magnetic field enables the chiral symmetry to be spontaneously br