ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak convergence and invariant measure of a full discretization for non-globally Lipschitz parabolic SPDE

44   0   0.0 ( 0 )
 نشر من قبل Jianbo Cui
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Approximating the invariant measure and the expectation of the functionals for parabolic stochastic partial differential equations (SPDEs) with non-globally Lipschitz coefficients is an active research area and is far from being well understood. In this article, we study such problem in terms of a full discretization based on the spectral Galerkin method and the temporal implicit Euler scheme. By deriving the a priori estimates and regularity estimates of the numerical solution via a variational approach and Malliavin calculus, we establish the sharp weak convergence rate of the full discretization. When the SPDE admits a unique $V$-uniformly ergodic invariant measure, we prove that the invariant measure can be approximated by the full discretization. The key ingredients lie on the time-independent weak convergence analysis and time-independent regularity estimates of the corresponding Kolmogorov equation. Finally, numerical experiments confirm the theoretical findings.

قيم البحث

اقرأ أيضاً

In this article we formalize the problem of modeling social networks into a measure-valued process and interacting particle system. We obtain a model that describes in continuous time each vertex of the graph at a latent spatial state as a Dirac meas ure. We describe the model and its formal design as a Markov process on finite and connected geometric graphs with values in path space. A careful analysis of some microscopic properties of the underlying process is provided. Moreover, we study the long time behavior of the stochastic particle system. Using a renormalization technique, which has the effect that the density of the vertices must grow to infinity, we show that the rescaled measure-valued process converges in law towards the solution of a deterministic equation. The strength of our general continuous time and measure-valued dynamical system is that their results are context-free, that is, that hold for arbitrary sequences of graphs.
In this article, we consider the stochastic Cahn--Hilliard equation driven by space-time white noise. We discretize this equation by using a spatial spectral Galerkin method and a temporal accelerated implicit Euler method. The optimal regularity pro perties and uniform moment bounds of the exact and numerical solutions are shown. Then we prove that the proposed numerical method is strongly convergent with the sharp convergence rate in a negative Sobolev space. By using an interpolation approach, we deduce the spatial optimal convergence rate and the temporal super-convergence rate of the proposed numerical method in strong convergence sense. To the best of our knowledge, this is the first result on the strong convergence rates of numerical methods for the stochastic Cahn--Hilliard equation driven by space-time white noise. This interpolation approach is also applied to the general noise and high dimension cases, and strong convergence rate results of the proposed scheme are given.
131 - Xiaojie Wang 2020
A novel class of implicit Milstein type methods is devised and analyzed in the present work for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. By incorporating a pair of method parameters $theta , eta in [0, 1]$ into both the drift and diffusion parts, the new schemes can be viewed as a kind of double implicit methods, which also work for non-commutative noise driven SDEs. Within a general framework, we offer upper mean-square error bounds for the proposed schemes, based on certain error terms only getting involved with the exact solution processes. Such error bounds help us to easily analyze mean-square convergence rates of the schemes, without relying on a priori high-order moment estimates of numerical approximations. Putting further globally polynomial growth condition, we successfully recover the expected mean-square convergence rate of order one for the considered schemes with $theta in [tfrac12, 1]$, solving general SDEs in various circumstances. As applications, some of the proposed schemes are also applied to solve two scalar SDE models arising in mathematical finance and evolving in the positive domain $(0, infty)$. More specifically, the particular drift-diffusion implicit Milstein method ($ theta = eta = 1 $) is utilized to approximate the Heston $tfrac32$-volatility model and the semi-implicit Milstein method ($theta =1, eta = 0$) is used to solve the Ait-Sahalia interest rate model. With the aid of the previously obtained error bounds, we reveal a mean-square convergence rate of order one of the positivity preserving schemes for the first time under more relaxed conditions, compared with existing relevant results for first order schemes in the literature. Numerical examples are finally reported to confirm the previous findings.
We consider a generalisation of Ulams method for approximating invariant densities of one-dimensional chaotic maps. Rather than use piecewise constant polynomials to approximate the density, we use polynomials of degree n which are defined by the req uirement that they preserve the measure on n+1 neighbouring subintervals. Over the whole interval, this results in a discontinuous piecewise polynomial approximation to the density. We prove error results where this approach is used to approximate smooth densities. We also consider the computation of the Lyapunov exponent using the polynomial density and show that the order of convergence is one order better than for the density itself. Together with using cubic polynomials in the density approximation, this yields a very efficient method for computing highly accurate estimates of the Lyapunov exponent. We illustrate the theoretical findings with some examples.
Lipschitz bandits is a prominent version of multi-armed bandits that studies large, structured action spaces such as the [0,1] interval, where similar actions are guaranteed to have similar rewards. A central theme here is the adaptive discretization of the action space, which gradually ``zooms in on the more promising regions thereof. The goal is to take advantage of ``nicer problem instances, while retaining near-optimal worst-case performance. While the stochastic version of the problem is well-understood, the general version with adversarial rewards is not. We provide the first algorithm for adaptive discretization in the adversarial version, and derive instance-dependent regret bounds. In particular, we recover the worst-case optimal regret bound for the adversarial version, and the instance-dependent regret bound for the stochastic version. Further, an application of our algorithm to dynamic pricing (where a seller repeatedly adjusts prices for a product) enjoys these regret bounds without any smoothness assumptions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا