ترغب بنشر مسار تعليمي؟ اضغط هنا

The Borg Cube Simulation: Cosmological Hydrodynamics with CRK-SPH

49   0   0.0 ( 0 )
 نشر من قبل J.D. Emberson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A challenging requirement posed by next-generation observations is a firm theoretical grasp of the impact of baryons on structure formation. Cosmological hydrodynamic simulations modeling gas physics are vital in this regard. A high degree of modeling flexibility exists in this space making it important to explore a range of methods in order to gauge the accuracy of simulation predictions. We present results from the first cosmological simulation using Conservative Reproducing Kernel Smoothed Particle Hydrodynamics (CRK-SPH). We employ two simulations: one evolved purely under gravity and the other with non-radiative hydrodynamics. Each contains 2x2304^3 cold dark matter plus baryon particles in an 800 Mpc/h box. We compare statistics to previous non-radiative simulations including power spectra, mass functions, baryon fractions, and concentration. We find self-similar radial profiles of gas temperature, entropy, and pressure and show that a simple analytic model recovers these results to better than 40% over two orders of magnitude in mass. We quantify the level of non-thermal pressure support in halos and demonstrate that hydrostatic mass estimates are biased low by 24% (10%) for halos of mass 10^15 (10^13) Msun/h. We compute angular power spectra for the thermal and kinematic Sunyaev-Zeldovich effects and find good agreement with the low-l Planck measurements. Finally, artificial scattering between particles of unequal mass is shown to have a large impact on the gravity-only run and we highlight the importance of better understanding this issue in hydrodynamic applications. This is the first in a simulation campaign using CRK-SPH with future work including subresolution gas treatments.



قيم البحث

اقرأ أيضاً

145 - Emiliano Merlin 2009
We present EvoL, the new release of the Padova N-body code for cosmological simulations of galaxy formation and evolution. In this paper, the basic Tree + SPH code is presented and analysed, together with an overview on the software architectures. Ev oL is a flexible parallel Fortran95 code, specifically designed for simulations of cosmological structure formation on cluster, galactic and sub-galactic scales. EvoL is a fully Lagrangian self-adaptive code, based on the classical Oct-tree and on the Smoothed Particle Hydrodynamics algorithm. It includes special features such as adaptive softening lengths with correcting extra-terms, and modern formulations of SPH and artificial viscosity. It is designed to be run in parallel on multiple CPUs to optimize the performance and save computational time. We describe the code in detail, and present the results of a number of standard hydrodynamical tests.
We present the McMaster Unbiased Galaxy Simulations (MUGS), the first 9 galaxies of an unbiased selection ranging in total mass from 5$times10^{11}$ M$_odot$ to 2$times10^{12}$ M$_odot$ simulated using n-body smoothed particle hydrodynamics (SPH) at high resolution. The simulations include a treatment of low temperature metal cooling, UV background radiation, star formation, and physically motivated stellar feedback. Mock images of the simulations show that the simulations lie within the observed range of relations such as that between color and magnitude and that between brightness and circular velocity (Tully-Fisher). The greatest discrepancy between the simulated galaxies and observed galaxies is the high concentration of material at the center of the galaxies as represented by the centrally peaked rotation curves and the high bulge-to-total ratios of the simulations determined both kinematically and photometrically. This central concentration represents the excess of low angular momentum material that long has plagued morphological studies of simulated galaxies and suggests that higher resolutions and a more accurate description of feedback will be required to simulate more realistic galaxies. Even with the excess central mass concentrations, the simulations suggest the important role merger history and halo spin play in the formation of disks.
239 - A.M. Beck , G. Murante , A. Arth 2015
We present an implementation of smoothed particle hydrodynamics (SPH) with improved accuracy for simulations of galaxies and the large-scale structure. In particular, we combine, implement, modify and test a vast majority of SPH improvement technique s in the latest instalment of the GADGET code. We use the Wendland kernel functions, a particle wake-up time-step limiting mechanism and a time-dependent scheme for artificial viscosity, which includes a high-order gradient computation and shear flow limiter. Additionally, we include a novel prescription for time-dependent artificial conduction, which corrects for gravitationally induced pressure gradients and largely improves the SPH performance in capturing the development of gas-dynamical instabilities. We extensively test our new implementation in a wide range of hydrodynamical standard tests including weak and strong shocks as well as shear flows, turbulent spectra, gas mixing, hydrostatic equilibria and self-gravitating gas clouds. We jointly employ all modifications; however, when necessary we study the performance of individual code modules. We approximate hydrodynamical states more accurately and with significantly less noise than standard SPH. Furthermore, the new implementation promotes the mixing of entropy between different fluid phases, also within cosmological simulations. Finally, we study the performance of the hydrodynamical solver in the context of radiative galaxy formation and non-radiative galaxy cluster formation. We find galactic disks to be colder, thinner and more extended and our results on galaxy clusters show entropy cores instead of steadily declining entropy profiles. In summary, we demonstrate that our improved SPH implementation overcomes most of the undesirable limitations of standard SPH, thus becoming the core of an efficient code for large cosmological simulations.
294 - Hao-Ran Yu , Ue-Li Pen , Xin Wang 2017
Cosmological large scale structure $N$-body simulations are computation-light, memory-heavy problems in supercomputing. The considerable amount of memory is usually dominated by an inefficient way of storing more than sufficient phase space informati on of particles. We present a new parallel, information-optimized, particle-mesh-based $N$-body code CUBE, in which information-efficiency and memory-efficiency are increased by nearly an order of magnitude. This is accomplished by storing particles relative phase space coordinates instead of global values, and in the format of fixed point as light as 1 byte. The remaining information is given by complementary density and velocity fields (negligible in memory space) and proper ordering of particles (no extra memory). Our numerical experiments show that this information-optimized $N$-body algorithm provides accurate results within the error of the particle-mesh algorithm. This significant lowering of the memory-to-computation ratio breaks the bottleneck of scaling up and speeding up large cosmological $N$-body simulations on multi-core and heterogeneous computing systems.
We compute the infrared (IR) emission from high-redshift galaxies in cosmological smoothed particle hydrodynamics simulations by coupling the output of the simulation with the population synthesis code `GRASIL by Silva et al. Based on the stellar mas s, metallicity and formation time of each star particle, we estimate the full spectral energy distribution of each star particle from ultraviolet to IR, and compute the luminosity function of simulated galaxies in the Spitzer broadband filters for direct comparison with the available Spitzer observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا