ترغب بنشر مسار تعليمي؟ اضغط هنا

Merits and constraints of low-${bm K^2}$ experimental data for the proton radius determination

48   0   0.0 ( 0 )
 نشر من قبل Eric Voutier
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The question of the determination of the proton charge radius $R_p$ from electron scattering data led to an unprecedented experimental effort for measurements of the electric form factor of the proton at low and very low momentum transfer in electron and muon elastic scattering. On the basis of basic properties of densities and fitting bias considerations, a procedure is developed in order to evaluate the impact of forthcoming data on $R_p$. Particularly, it is shown that a 0.1% precision on these future cross section data is necessary to establish indisputably the $R_p$-value as determined from lepton scattering. The ProRad (Proton Radius) experiment at the PRAE (Platform for Research and Applications with Electrons) facility in Orsay is further discussed, especially the experimental method to meet this stringent constraint.



قيم البحث

اقرأ أيضاً

[Background] The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. [Purpose] In an attempt to understand the di screpancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon and Stanford. [Method] We make use of stepwise regression techniques using the $F$-test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate error estimates. [Results] Starting with the precision, low four-momentum transfer ($Q^2$) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the $F$-test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on $G_E$ from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-$Q^2$ data on $G_E$ to select functions which extrapolate to high $Q^2$, we find that a Pade ($N=M=1$) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, $G_E(Q^2) = ( 1 + Q^2/0.66,mathrm{GeV}^2)^{-2}$. [Conclusions] From this statistical analysis, we conclude that the electron scattering result and the muonic hydrogen result are consistent. It is the atomic hydrogen results that are the outliers.
In two recent papers it is argued that the proton radius puzzle can be explained by truncating the electron scattering data to low momentum transfer and fit the rms radius in the low momentum expansion of the form factor. It is shown that this proced ure is inconsistent and violates the Fourier theorem. The puzzle cannot be explained in this way.
119 - N. Markov , K. Joo , V.D. Burkert 2019
The exclusive electroproduction process $ep rightarrow eppi^{0}$ was measured in the range of photon virtualities $Q^{2} = 0.4 - 1.0$~GeV$^{2}$ and the invariant mass range of the $ppi^{0}$ system of $W = 1.1 - 1.8$~GeV. These kinematics are covered in exclusive $pi^{0}$ electroproduction off the proton with nearly complete angular coverage in the $ppi^{0}$ center-of-mass system and with high statistical accuracy. Nearly 36000 cross section points were measured, and the structure functions $sigma_T+epsilonsigma_L$, $sigma_{LT}$, and $sigma_{TT}$, were extracted via fitting the $phi_{pi^{0}}$ dependence of the cross section. A Legendre polynomial expansion analysis demonstrates the sensitivity of our data to high-lying $N^*$ and $Delta^{*}$ resonances with $M~>~1.6$ GeV. As part of a broad effort to determine the electrocouplings of the $N^{*}$ and $Delta^{*}$ resonances using both single- and double-pion electroproduction, this dataset is crucial for the reliable extraction of the high-lying resonance electrocouplings from the combined isospin analysis of the $N pi$ and $pi^{+}pi^{-} p$ channels.
Extracting the proton charge radius from electron scattering data requires determining the slope of the charge form factor at $Q^2$ of zero. But as experimental data never reach that limit, numerous methods for making the extraction have been propose d, though often the functions are determined after seeing the data which can lead to confirmation bias. To find functional forms that will allow for a robust extraction of the input radius for a wide variety of functional forms in order to have confidence in the extraction from upcoming low $Q^2$ experimental data such as the Jefferson Lab PRad experiment, we create a general framework for inputting form-factor functions as well as various fitting functions. The input form factors are used to generate pseudo-data with fluctuations intended to mimic the binning and random uncertainty of a given set of real data. All combinations of input functions and fit functions can then be tested repeatedly against regenerated pseudo-data. Since the input radius is known, this allows us to find fit functions that are robust for radius extractions in an objective fashion. For the range and uncertainty of the PRad data, we find that a two-parameter rational function, a two-parameter continued fraction and the second order polynomial expansion of $z$ can extract the input radius regardless of the input charge form factor function that is used. We have created an easily expandable framework to search for functional forms that allow for a robust extraction of the radius from a given binning and uncertainty of pseudo-data generated from a wide variety of trial functions. This method has enabled a successful search for the best functional forms to extract the radius from the upcoming PRad data and can be used for other experiments.
The reaction anti-proton + proton -> anti-Lambda + Lambda -> anti-proton + pi^+ + proton + pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with t he self-analyzing property of Lambda/anti-Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-Lambda + Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا