ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Dense Stereo Matching for Digital Surface Models from Satellite Imagery

268   0   0.0 ( 0 )
 نشر من قبل Wayne Treible
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Digital Surface Model generation from satellite imagery is a difficult task that has been largely overlooked by the deep learning community. Stereo reconstruction techniques developed for terrestrial systems including self driving cars do not translate well to satellite imagery where image pairs vary considerably. In this work we present neural network tailored for Digital Surface Model generation, a ground truthing and training scheme which maximizes available hardware, and we present a comparison to existing methods. The resulting models are smooth, preserve boundaries, and enable further processing. This represents one of the first attempts at leveraging deep learning in this domain.

قيم البحث

اقرأ أيضاً

Existing methods for stereo work on narrow baseline image pairs giving limited performance between wide baseline views. This paper proposes a framework to learn and estimate dense stereo for people from wide baseline image pairs. A synthetic people s tereo patch dataset (S2P2) is introduced to learn wide baseline dense stereo matching for people. The proposed framework not only learns human specific features from synthetic data but also exploits pooling layer and data augmentation to adapt to real data. The network learns from the human specific stereo patches from the proposed dataset for wide-baseline stereo estimation. In addition to patch match learning, a stereo constraint is introduced in the framework to solve wide baseline stereo reconstruction of humans. Quantitative and qualitative performance evaluation against state-of-the-art methods of proposed method demonstrates improved wide baseline stereo reconstruction on challenging datasets. We show that it is possible to learn stereo matching from synthetic people dataset and improve performance on real datasets for stereo reconstruction of people from narrow and wide baseline stereo data.
127 - Hengli Wang , Rui Fan , Ming Liu 2021
Convolutional neural network (CNN)-based stereo matching approaches generally require a dense cost volume (DCV) for disparity estimation. However, generating such cost volumes is computationally-intensive and memory-consuming, hindering CNN training and inference efficiency. To address this problem, we propose SCV-Stereo, a novel CNN architecture, capable of learning dense stereo matching from sparse cost volume (SCV) representations. Our inspiration is derived from the fact that DCV representations are somewhat redundant and can be replaced with SCV representations. Benefiting from these SCV representations, our SCV-Stereo can update disparity estimations in an iterative fashion for accurate and efficient stereo matching. Extensive experiments carried out on the KITTI Stereo benchmarks demonstrate that our SCV-Stereo can significantly minimize the trade-off between accuracy and efficiency for stereo matching. Our project page is https://sites.google.com/view/scv-stereo.
Being a crucial task of autonomous driving, Stereo matching has made great progress in recent years. Existing stereo matching methods estimate disparity instead of depth. They treat the disparity errors as the evaluation metric of the depth estimatio n errors, since the depth can be calculated from the disparity according to the triangulation principle. However, we find that the error of the depth depends not only on the error of the disparity but also on the depth range of the points. Therefore, even if the disparity error is low, the depth error is still large, especially for the distant points. In this paper, a novel Direct Depth Learning Network (DDL-Net) is designed for stereo matching. DDL-Net consists of two stages: the Coarse Depth Estimation stage and the Adaptive-Grained Depth Refinement stage, which are all supervised by depth instead of disparity. Specifically, Coarse Depth Estimation stage uniformly samples the matching candidates according to depth range to construct cost volume and output coarse depth. Adaptive-Grained Depth Refinement stage performs further matching near the coarse depth to correct the imprecise matching and wrong matching. To make the Adaptive-Grained Depth Refinement stage robust to the coarse depth and adaptive to the depth range of the points, the Granularity Uncertainty is introduced to Adaptive-Grained Depth Refinement stage. Granularity Uncertainty adjusts the matching range and selects the candidates features according to coarse prediction confidence and depth range. We verify the performance of DDL-Net on SceneFlow dataset and DrivingStereo dataset by different depth metrics. Results show that DDL-Net achieves an average improvement of 25% on the SceneFlow dataset and $12%$ on the DrivingStereo dataset comparing the classical methods. More importantly, we achieve state-of-the-art accuracy at a large distance.
Climate change has caused reductions in river runoffs and aquifer recharge resulting in an increasingly unsustainable crop water demand from reduced freshwater availability. Achieving food security while deploying water in a sustainable manner will c ontinue to be a major challenge necessitating careful monitoring and tracking of agricultural water usage. Historically, monitoring water usage has been a slow and expensive manual process with many imperfections and abuses. Ma-chine learning and remote sensing developments have increased the ability to automatically monitor irrigation patterns, but existing techniques often require curated and labelled irrigation data, which are expensive and time consuming to obtain and may not exist for impactful areas such as developing countries. In this paper, we explore an end-to-end real world application of irrigation detection with uncurated and unlabeled satellite imagery. We apply state-of-the-art self-supervised deep learning techniques to optical remote sensing data, and find that we are able to detect irrigation with up to nine times better precision, 90% better recall and 40% more generalization ability than the traditional supervised learning methods.
To respond to disasters such as earthquakes, wildfires, and armed conflicts, humanitarian organizations require accurate and timely data in the form of damage assessments, which indicate what buildings and population centers have been most affected. Recent research combines machine learning with remote sensing to automatically extract such information from satellite imagery, reducing manual labor and turn-around time. A major impediment to using machine learning methods in real disaster response scenarios is the difficulty of obtaining a sufficient amount of labeled data to train a model for an unfolding disaster. This paper shows a novel application of semi-supervised learning (SSL) to train models for damage assessment with a minimal amount of labeled data and large amount of unlabeled data. We compare the performance of state-of-the-art SSL methods, including MixMatch and FixMatch, to a supervised baseline for the 2010 Haiti earthquake, 2017 Santa Rosa wildfire, and 2016 armed conflict in Syria. We show how models trained with SSL methods can reach fully supervised performance despite using only a fraction of labeled data and identify areas for further improvements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا