ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling Opinion Dynamics in the Age of Algorithmic Personalisation

98   0   0.0 ( 0 )
 نشر من قبل Nicola Perra
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern technology has drastically changed the way we interact and consume information. For example, online social platforms allow for seamless communication exchanges at an unprecedented scale. However, we are still bounded by cognitive and temporal constraints. Our attention is limited and extremely valuable. Algorithmic personalisation has become a standard approach to tackle the information overload problem. As result, the exposure to our friends opinions and our perception about important issues might be distorted. However, the effects of algorithmic gatekeeping on our hyper-connected society are poorly understood. Here, we devise an opinion dynamics model where individuals are connected through a social network and adopt opinions as function of the view points they are exposed to. We apply various filtering algorithms that select the opinions shown to users i) at random ii) considering time ordering or iii) their current beliefs. Furthermore, we investigate the interplay between such mechanisms and crucial features of real networks. We found that algorithmic filtering might influence opinions share and distributions, especially in case information is biased towards the current opinion of each user. These effects are reinforced in networks featuring topological and spatial correlations where echo chambers and polarisation emerge. Conversely, heterogeneity in connectivity patterns reduces such tendency. We consider also a scenario where one opinion, through nudging, is centrally pushed to all users. Interestingly, even minimal nudging is able to change the status quo moving it towards the desired view point. Our findings suggest that simple filtering algorithms might be powerful tools to regulate opinion dynamics taking place on social networks



قيم البحث

اقرأ أيضاً

Modelling efforts in opinion dynamics have to a large extent ignored that opinion exchange between individuals can also have an effect on how willing they are to express their opinion publicly. Here, we introduce a model of public opinion expression. Two groups of agents with different opinion on an issue interact with each other, changing the willingness to express their opinion according to whether they perceive themselves as part of the majority or minority opinion. We formulate the model as a multi-group majority game and investigate the Nash equilibria. We also provide a dynamical systems perspective: Using the reinforcement learning algorithm of $Q$-learning, we reduce the $N$-agent system in a mean-field approach to two dimensions which represent the two opinion groups. This two-dimensional system is analyzed in a comprehensive bifurcation analysis of its parameters. The model identifies social-structural conditions for public opinion predominance of different groups. Among other findings, we show under which circumstances a minority can dominate public discourse.
In this work, we investigate a heterogeneous population in the modified Hegselmann-Krause opinion model on complex networks. We introduce the Shannon information entropy about all relative opinion clusters to characterize the cluster profile in the f inal configuration. Independent of network structures, there exists the optimal stubbornness of one subpopulation for the largest number of clusters and the highest entropy. Besides, there is the optimal bounded confidence (or subpopulation ratio) of one subpopulation for the smallest number of clusters and the lowest entropy. However, network structures affect cluster profiles indeed. A large average degree favors consensus for making different networks more similar with complete graphs. The network size has limited impact on cluster profiles of heterogeneous populations on scale-free networks but has significant effects upon those on small-world networks.
Opinion formation is an important element of social dynamics. It has been widely studied in the last years with tools from physics, mathematics and computer science. Here, a continuous model of opinion dynamics for multiple possible choices is analys ed. Its main features are the inclusion of disagreement and possibility of modulating information, both from one and multiple sources. The interest is in identifying the effect of the initial cohesion of the population, the interplay between cohesion and information extremism, and the effect of using multiple sources of information that can influence the system. Final consensus, especially with external information, depends highly on these factors, as numerical simulations show. When no information is present, consensus or segregation is determined by the initial cohesion of the population. Interestingly, when only one source of information is present, consensus can be obtained, in general, only when this is extremely mild, i.e. there is not a single opinion strongly promoted, or in the special case of a large initial cohesion and low information exposure. On the contrary, when multiple information sources are allowed, consensus can emerge with an information source even when this is not extremely mild, i.e. it carries a strong message, for a large range of initial conditions.
171 - Hossein Noorazar 2020
Opinion dynamics have attracted the interest of researchers from different fields. Local interactions among individuals create interesting dynamics for the system as a whole. Such dynamics are important from a variety of perspectives. Group decision making, successful marketing, and constructing networks (in which consensus can be reached or prevented) are a few examples of existing or potential applications. The invention of the Internet has made the opinion fusion faster, unilateral, and on a whole different scale. Spread of fake news, propaganda, and election interferences have made it clear there is an essential need to know more about these dynamics. The emergence of new ideas in the field has accelerated over the last few years. In the first quarter of 2020, at least 50 research papers have emerged, either peer-reviewed and published or on pre-print outlets such as arXiv. In this paper, we summarize these ground-breaking ideas and their fascinating extensions and introduce newly surfaced concepts.
Opinion dynamics concerns social processes through which populations or groups of individuals agree or disagree on specific issues. As such, modelling opinion dynamics represents an important research area that has been progressively acquiring releva nce in many different domains. Existing approaches have mostly represented opinions through discrete binary or continuous variables by exploring a whole panoply of cases: e.g. independence, noise, external effects, multiple issues. In most of these cases the crucial ingredient is an attractive dynamics through which similar or similar enough agents get closer. Only rarely the possibility of explicit disagreement has been taken into account (i.e., the possibility for a repulsive interaction among individuals opinions), and mostly for discrete or 1-dimensional opinions, through the introduction of additional model parameters. Here we introduce a new model of opinion formation, which focuses on the interplay between the possibility of explicit disagreement, modulated in a self-consistent way by the existing opinions overlaps between the interacting individuals, and the effect of external information on the system. Opinions are modelled as a vector of continuous variables related to multiple possible choices for an issue. Information can be modulated to account for promoting multiple possible choices. Numerical results show that extreme information results in segregation and has a limited effect on the population, while milder messages have better success and a cohesion effect. Additionally, the initial condition plays an important role, with the population forming one or multiple clusters based on the initial average similarity between individuals, with a transition point depending on the number of opinion choices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا