ﻻ يوجد ملخص باللغة العربية
We consider Dirichlet problems for linear elliptic equations of second order in divergence form on a bounded or exterior smooth domain $Omega$ in $mathbb{R}^n$, $n ge 3$, with drifts $mathbf{b}$ in the critical weak $L^n$-space $L^{n,infty}(Omega ; mathbb{R}^n )$. First, assuming that the drift $mathbf{b}$ has nonnegative weak divergence in $L^{n/2, infty }(Omega )$, we establish existence and uniqueness of weak solutions in $W^{1,p}(Omega )$ or $D^{1,p}(Omega )$ for any $p$ with $n = n/(n-1)< p < n$. By duality, a similar result also holds for the dual problem. Next, we prove $W^{1,n+varepsilon}$ or $W^{2, n/2+delta}$-regularity of weak solutions of the dual problem for some $varepsilon, delta >0$ when the domain $Omega$ is bounded. By duality, these results enable us to obtain a quite general uniqueness result as well as an existence result for weak solutions belonging to $bigcap_{p< n }W^{1,p}(Omega )$. Finally, we prove a uniqueness result for exterior problems, which implies in particular that (very weak) solutions are unique in both $L^{n/(n-2),infty}(Omega )$ and $L^{n,infty}(Omega )$.
In this paper we prove regularity results for a class of nonlinear degenerate elliptic equations of the form $displaystyle -operatorname{div}(A(| abla u|) abla u)+Bleft( | abla u|right) =f(u)$; in particular, we investigate the second order regularit
This paper is devoted to discussing the existence and uniqueness of weak solutions to time-fractional elliptic equations having time-dependent variable coefficients. To obtain the main result, our strategy is to combine the Galerkin method, a basic i
In this note, we obtain a version of Aleksandrovs maximum principle when the drift coefficients are in Morrey spaces, which contains $L_d$, and when the free term is in $L_p$ for some $p<d$.
We classify positive solutions to a class of quasilinear equations with Neumann or Robin boundary conditions in convex domains. Our main tool is an integral formula involving the trace of some relevant quantities for the problem. Under a suitable con
This paper studies the dissipative generalized surface quasi-geostrophic equations in a supercritical regime where the order of the dissipation is small relative to order of the velocity, and the velocities are less regular than the advected scalar b