ترغب بنشر مسار تعليمي؟ اضغط هنا

Programmable four-photon graph states on a silicon chip

85   0   0.0 ( 0 )
 نشر من قبل Joshua Silverstone
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Future quantum computers require a scalable architecture on a scalable technology---one that supports millions of high-performance components. Measurement-based protocols, based on graph states, represent the state of the art in architectures for optical quantum computing. Silicon photonics offers enormous scale and proven quantum optical functionality. Here we report the first demonstration of photonic graph states on a mass-manufactured chip using four on-chip generated photons. We generate both star- and line-type graph states, implementing a basic measurement-based protocol, and measure heralded interference of the chips four photons. We develop a model of the device and bound the dominant sources of error using Bayesian inference. The two-photon barrier, which has constrained chip-scale quantum optics, is now broken; future increases in on-chip photon number now depend solely on reducing loss, and increasing rates. This experiment, combining silicon technology with a graph-based architecture, illuminates one path to a large-scale quantum future.



قيم البحث

اقرأ أيضاً

Progress in integrated photonics enables combining several elementary functions on single substrates for realizing advanced functionnalized chips. We report a monolithic integrated quantum photonic realization on lithium niobate, where nonlinear opti cs and electro-optics properties have been harnessed simultaneously for generating heralded configurable, two-photon states. Taking advantage of a picosecond pump laser and telecom components, we demonstrate the production of various path-coded heralded two-photon states, showing 94% raw visibility for Hong-Ou-Mandel interference. The versatility and performance of such a highly integrated photonic entanglement source enable exploring more complex quantum information processing protocols finding application in communication, metrology and processing tasks.
Efficient sources of many-partite non-classical states are key for the advancement of quantum technologies and for the fundamental testing of quantum mechanics. We demonstrate the generation of time-correlated photon triplets at telecom wavelengths v ia pulsed cascaded parametric down-conversion in a monolithically integrated source. By detecting the generated states with success probabilities of $(6.25pm1.09)times10^{-11}$ per pump pulse at injected powers as low as $10;mumathrm{W}$, we benchmark the efficiency of the complete system and deduce its high potential for scalability. Our source is unprecedentedly long-term stable, it overcomes interface losses intrinsically due to its monolithic architecture, and the photon-triplet states dominate uncorrelated noise significantly. These results mark crucial progress towards the proliferation of robust, scalable, synchronized and miniaturized quantum technology.
Large-scale integrated quantum photonic technologies will require the on-chip integration of identical photon sources with reconfigurable waveguide circuits. Relatively complex quantum circuits have already been demonstrated, but few studies acknowle dge the pressing need to integrate photon sources and waveguide circuits together on-chip. A key step towards such large-scale quantum technologies is the integration of just two individual photon sources within a waveguide circuit, and the demonstration of high-visibility quantum interference between them. Here, we report a silicon-on-insulator device combining two four-wave mixing sources, in an interferometer with a reconfigurable phase shifter. We configure the device to create and manipulate two-colour (non-degenerate) or same-colour (degenerate), path-entangled or path-unentangled photon pairs. We observe up to 100.0+/-0.4% visibility quantum interference on-chip, and up to 95+/-4% off-chip. Our device removes the need for external photon sources, provides a path to increasing the complexity of quantum photonic circuits, and is a first step towards fully-integrated quantum technologies.
Quantum mechanically, multiple particles can jointly be in a coherent superposition of two or more different states at the same time. This property is called quantum entanglement, and gives rise to characteristic nonlocal interference and stays at th e heart of quantum information process. Here, rather than interference of different intrinsic properties of particles, we experimentally demonstrated coherent superposition of two different birthplaces of a four-photon state. The quantum state is created in four probabilistic photon-pair sources, two combinations of which can create photon quadruplets. Coherent elimination and revival of distributed 4-photons can be fully controlled by tuning a phase. The stringent coherence requirements are met by using a silicon-based integrated photonic chip that contains four spiral waveguides for producing photon pairs via spontaneous four-wave mixing. The experiment gives rise to peculiar nonlocal phenomena without any obvious involvement of entanglement. Besides several potential applications that exploit the new on-chip technology, it opens up the possibility for fundamental studies on nonlocality with spatially separated locations.
Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, textit{i.e .}, non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5$pm$8% and 95.0$pm$8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا