ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric Horizons in the Kastor-Traschen Multi Black Hole Solutions

129   0   0.0 ( 0 )
 نشر من قبل David McNutt
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the existence of invariantly defined quasi-local hypersurfaces in the Kastor-Traschen solution containing $N$ charge-equal-to-mass black holes. These hypersurfaces are characterized by the vanishing of particular curvature invariants, known as Cartan invariants, which are generated using the frame approach. The Cartan invariants of interest describe the expansion of the outgoing and ingoing null vectors belonging to the invariant null frame arising from the Cartan-Karlhede algorithm. We show that the evolution of the hypersurfaces surrounding the black holes depends on an upper-bound on the total mass for the case of two and three equal mass black holes. We discuss the results in the context of the geometric horizon conjectures.



قيم البحث

اقرأ أيضاً

We consider a spherically symmetric line element which admits either a black hole geometry or a wormhole geometry and show that in both cases the apparent horizon or the wormhole throat is partially characterized by the zero-set of a single curvature invariant. The detection of the apparent horizon by this invariant is consistent with the geometric horizon detection conjectures and implies that it is a geometric horizon of the black hole, while the detection of the wormhole throat presents a conceptual problem for the conjectures. To distinguish between these surfaces, we determine a set of curvature invariants that fully characterize the apparent horizon and wormhole throat. Motivated by this result, we introduce the concept of a geometric surface as a generalization of a geometric horizon and extend the geometric horizon detection conjectures to geometric surfaces. As an application, we employ curvature invariants to characterize three important surfaces of the line element introduced by Simpson, Martin-Moruno and Visser which describes transitions between regular Vaidya black holes, traversable wormholes, and black bounces.
In a binary black hole merger, it is known that the inspiral portion of the waveform corresponds to two distinct horizons orbiting each other, and the merger and ringdown signals correspond to the final horizon being formed and settling down to equil ibrium. However, we still lack a detailed understanding of the relation between the horizon geometry in these three regimes and the observed waveform. Here we show that the well known inspiral chirp waveform has a clear counterpart on black hole horizons, namely, the shear of the outgoing null rays at the horizon. We demonstrate that the shear behaves very much like a compact binary coalescence waveform with increasing frequency and amplitude. Furthermore, the parameters of the system estimated from the horizon agree with those estimated from the waveform. This implies that even though black hole horizons are causally disconnected from us, assuming general relativity to be true, we can potentially infer some of their detailed properties from gravitational wave observations.
We examine the structure of the event horizon for numerical simulations of two black holes that begin in a quasicircular orbit, inspiral, and finally merge. We find that the spatial cross section of the merged event horizon has spherical topology (to the limit of our resolution), despite the expectation that generic binary black hole mergers in the absence of symmetries should result in an event horizon that briefly has a toroidal cross section. Using insight gained from our numerical simulations, we investigate how the choice of time slicing affects both the spatial cross section of the event horizon and the locus of points at which generators of the event horizon cross. To ensure the robustness of our conclusions, our results are checked at multiple numerical resolutions. 3D visualization data for these resolutions are available for public access online. We find that the structure of the horizon generators in our simulations is consistent with expectations, and the lack of toroidal horizons in our simulations is due to our choice of time slicing.
General Relativity predicts the existence of black-holes. Access to the complete space-time manifold is required to describe the black-hole. This feature necessitates that black-hole dynamics is specified by future or teleological boundary condition. Here we demonstrate that the statistical mechanical description of black-holes, the raison detre behind the existence of black-hole thermodynamics, requires teleological boundary condition. Within the fluid-gravity paradigm --- Einsteins equations when projected on space-time horizons resemble Navier-Stokes equation of a fluid --- we show that the specific heat and the coefficient of bulk viscosity of the horizon-fluid are negative only if the teleological boundary condition is taken into account. We argue that in a quantum theory of gravity, the future boundary condition plays a crucial role. We briefly discuss the possible implications of this at late stages of black-hole evaporation.
In a companion paper [1], we have presented a cross-correlation approach to near-horizon physics in which bulk dynamics is probed through the correlation of quantities defined at inner and outer spacetime hypersurfaces acting as test screens. More sp ecifically, dynamical horizons provide appropriate inner screens in a 3+1 setting and, in this context, we have shown that an effective-curvature vector measured at the common horizon produced in a head-on collision merger can be correlated with the flux of linear Bondi-momentum at null infinity. In this paper we provide a more sound geometric basis to this picture. First, we show that a rigidity property of dynamical horizons, namely foliation uniqueness, leads to a preferred class of null tetrads and Weyl scalars on these hypersurfaces. Second, we identify a heuristic horizon news-like function, depending only on the geometry of spatial sections of the horizon. Fluxes constructed from this function offer refined geometric quantities to be correlated with Bondi fluxes at infinity, as well as a contact with the discussion of quasi-local 4-momentum on dynamical horizons. Third, we highlight the importance of tracking the internal horizon dual to the apparent horizon in spatial 3-slices when integrating fluxes along the horizon. Finally, we discuss the link between the dissipation of the non-stationary part of the horizons geometry with the viscous-fluid analogy for black holes, introducing a geometric prescription for a slowness parameter in black-hole recoil dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا