ﻻ يوجد ملخص باللغة العربية
We investigate the existence of invariantly defined quasi-local hypersurfaces in the Kastor-Traschen solution containing $N$ charge-equal-to-mass black holes. These hypersurfaces are characterized by the vanishing of particular curvature invariants, known as Cartan invariants, which are generated using the frame approach. The Cartan invariants of interest describe the expansion of the outgoing and ingoing null vectors belonging to the invariant null frame arising from the Cartan-Karlhede algorithm. We show that the evolution of the hypersurfaces surrounding the black holes depends on an upper-bound on the total mass for the case of two and three equal mass black holes. We discuss the results in the context of the geometric horizon conjectures.
We consider a spherically symmetric line element which admits either a black hole geometry or a wormhole geometry and show that in both cases the apparent horizon or the wormhole throat is partially characterized by the zero-set of a single curvature
In a binary black hole merger, it is known that the inspiral portion of the waveform corresponds to two distinct horizons orbiting each other, and the merger and ringdown signals correspond to the final horizon being formed and settling down to equil
We examine the structure of the event horizon for numerical simulations of two black holes that begin in a quasicircular orbit, inspiral, and finally merge. We find that the spatial cross section of the merged event horizon has spherical topology (to
General Relativity predicts the existence of black-holes. Access to the complete space-time manifold is required to describe the black-hole. This feature necessitates that black-hole dynamics is specified by future or teleological boundary condition.
In a companion paper [1], we have presented a cross-correlation approach to near-horizon physics in which bulk dynamics is probed through the correlation of quantities defined at inner and outer spacetime hypersurfaces acting as test screens. More sp