ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic stabilization of 1D surface states near twin boundaries in noncentrosymmetric BiPd

72   0   0.0 ( 0 )
 نشر من قبل Chi Ming Yim
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The search for one-dimensional (1D) topologically-protected electronic states has become an important research goal for condensed matter physics owing to their potential use in spintronic devices or as a building block for topologically non-trivial electronic states. Using low temperature scanning tunneling microscopy, we demonstrate the formation of 1D electronic states at twin boundaries at the surface of the noncentrosymmetric material BiPd. These twin boundaries are topological defects which separate regions with antiparallel orientations of the crystallographic textit{b} axis. We demonstrate that the formation of the 1D electronic states can be rationalized by a change in effective mass of two-dimensional surface states across the twin boundary. Our work therefore reveals a novel route towards designing 1D electronic states with strong spin-orbit coupling.

قيم البحث

اقرأ أيضاً

186 - H.M. Benia , E. Rampi , C. Trainer 2016
Materials with strong spin-orbit coupling (SOC) have in recent years become a subject of intense research due to their potential applications in spintronics and quantum information technology. In particular, in systems which break inversion symmetry, SOC facilitates the Rashba-Dresselhaus effect, leading to a lifting of spin degeneracy in the bulk and intricate spin textures of the Bloch wave functions. Here, by combining angular resolved photoemission (ARPES) and low temperature scanning tunneling microscopy (STM) measurements with relativistic first-principles band structure calculations, we examine the role of SOC in single crystals of noncentrosymmetric BiPd. We report the detection of several Dirac surface states, one of which exhibits an extremely large spin splitting. Unlike the surface states in inversion-symmetric systems, the Dirac surface states of BiPd have completely different properties at opposite faces of the crystal and are not trivially linked by symmetry. The spin-splitting of the surface states exhibits a strong anisotropy by itself, which can be linked to the low in-plane symmetry of the surface termination.
In non-magnetic bulk materials, inversion symmetry protects the spin degeneracy. If the bulk crystal structure lacks a centre of inversion, however, spin-orbit interactions lift the spin degeneracy, leading to a Rashba metal whose Fermi surfaces exhi bit an intricate spin texture. In superconducting Rashba metals a pairing wavefunction constructed from these complex spin structures will generally contain both singlet and triplet character. Here we examine the possible triplet components of the order parameter in noncentrosymmetric BiPd, combining for the first time in a noncentrosymmetric superconductor macroscopic characterization, atomic-scale ultra-low-temperature scanning tunnelling spectroscopy, and relativistic first-principles calculations. While the superconducting state of BiPd appears topologically trivial, consistent with Bardeen-Cooper-Schrieffer theory with an order parameter governed by a single isotropic s-wave gap, we show that the material exhibits Dirac-cone surface states with a helical spin polarization.
186 - A. P. Rooney , Z. Li , W. Zhao 2018
The high mechanical strength and excellent flexibility of 2D materials such as graphene are some of their most important properties [1]. Good flexibility is key for exploiting 2D materials in many emerging technologies, such as wearable electronics, bioelectronics, protective coatings and composites [1] and recently bending has been suggested as a route to tune electronic transport behaviour [2]. For virtually all crystalline materials macroscopic deformation is accommodated by the movement of dislocations and through the formation of twinning defects [3]; it is the geometry of the resulting microstructure that largely determines the mechanical and electronic properties. Despite this, the atomic microstructure of 2D materials after mechanical deformation has not been widely investigated: only by understanding these deformed microstructures can the resulting properties be accurately predicted and controlled. In this paper we describe the different structural features that can form as a result of bending in van der Waals (vdW) crystals of 2D materials. We show that twin boundaries, an important class of crystal defect, are delocalised by several nm and not atomically sharp as has been assumed for over half a century [4]. In addition, we demonstrate that different classes of microstructure are present in the deformed material and can be predicted from just the atomic structure, bend angle, and flake thickness. We anticipate that this new knowledge of the deformation structure for 2D materials will provide foundations for tailoring transport behaviour[2], mechanical properties, liquid-phase [5,6] and scotch-tape exfoliation [7,8], and crystal growth.
Combining multiple emergent correlated properties such as superconductivity and magnetism within the topological matrix can have exceptional consequences in garnering new and exotic physics. Here, we study the topological surface states from a noncen trosymmetric $alpha$-BiPd superconductor by employing angle-resolved photoemission spectroscopy (ARPES) and first principle calculations. We observe that the Dirac surface states of this system have several interesting and unusual properties, compared to other topological surface states. The surface state is strongly anisotropic and the in-plane Fermi velocity varies rigorously on rotating the crystal about the $y$-axis. Moreover, it acquires an unusual band gap as a function of $k_y$, possibly due to hybridization with bulk bands, detected upon varying the excitation energy. Coexistence of all the functional properties, in addition to the unusual surface state characteristics make this an interesting material.
There have been conflicting reports on the electronic properties of twin domain boundaries (DBs) in MoSe2 monolayer, including the quantum well states, charge density wave, and Tomonaga-Luttinger liquid (TLL). Here we employ low-temperature scanning tunneling spectroscopy to reveal both the quantum confinement effect and signatures of TLL in the one-dimensional DBs. The data do not support the CDW at temperatures down to ~5 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا