ﻻ يوجد ملخص باللغة العربية
Optimization problems consist of either maximizing or minimizing an objective function. Instead of looking for a maximum solution (resp. minimum solution), one can find a minimum maximal solution (resp. maximum minimal solution). Such flipping of the objective function was done for many classical optimization problems. For example, Minimum Vertex Cover becomes Maximum Minimal Vertex Cover, Maximum Independent Set becomes Minimum Maximal Independent Set and so on. In this paper, we propose to study the weighted version of Maximum Minimal Edge Cover called Upper Edge Cover, a problem having application in the genomic sequence alignment. It is well-known that Minimum Edge Cover is polynomial-time solvable and the flipped version is NP-hard, but constant approximable. We show that the weighted Upper Edge Cover is much more difficult than Upper Edge Cover because it is not $O(frac{1}{n^{1/2-varepsilon}})$ approximable, nor $O(frac{1}{Delta^{1-varepsilon}})$ in edge-weighted graphs of size $n$ and maximum degree $Delta$ respectively. Indeed, we give some hardness of approximation results for some special restricted graph classes such as bipartite graphs, split graphs and $k$-trees. We counter-balance these negative results by giving some positive approximation results in specific graph classes.
Finding cohesive subgraphs in a network is a well-known problem in graph theory. Several alternative formulations of cohesive subgraph have been proposed, a notable example being $s$-club, which is a subgraph where each vertex is at distance at most
We investigate the polynomial-time approximability of the multistage version of Min-Sum Set Cover ($mathrm{DSSC}$), a natural and intriguing generalization of the classical List Update problem. In $mathrm{DSSC}$, we maintain a sequence of permutation
A directed odd cycle transversal of a directed graph (digraph) $D$ is a vertex set $S$ that intersects every odd directed cycle of $D$. In the Directed Odd Cycle Transversal (DOCT) problem, the input consists of a digraph $D$ and an integer $k$. The
We introduce and study two natural generalizations of the Connected VertexCover (VC) problem: the $p$-Edge-Connected and $p$-Vertex-Connected VC problem (where $p geq 2$ is a fixed integer). Like Connected VC, both new VC problems are FPT, but do not
Online bipartite matching and its variants are among the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) introduced an elegant algorithm for the unweighted problem that achieves an optimal compe