ترغب بنشر مسار تعليمي؟ اضغط هنا

Contribution of the core to the thermal evolution of sub-Neptunes

115   0   0.0 ( 0 )
 نشر من قبل Allona Vazan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sub-Neptune planets are a very common type of planets. They are inferred to harbour a primordial (H/He) envelope, on top of a (rocky) core, which dominates the mass. Here, we investigate the long-term consequences of the core properties on the planet mass-radius relation. We consider the role of various core energy sources resulting from core formation, its differentiation, its solidification (latent heat), core contraction and radioactive decay. We divide the evolution of the rocky core into three phases: the formation phase, which sets the initial conditions, the magma ocean phase, characterized by rapid heat transport, and the solid state phase, where cooling is inefficient. We find that for typical sub-Neptune planets of ~2-10 Earth masses and envelope mass fractions of 0.5-10% the magma ocean phase lasts several Gyrs, much longer than for terrestrial planets. The magma ocean phase effectively erases any signs of the initial core thermodynamic state. After solidification, the reduced heat flux from the rocky core causes a significant drop in the rocky core surface temperature, but its effect on the planet radius is limited. In the long run, radioactive heating is the most significant core energy source in our model. Overall, the long term radius uncertainty by core thermal effects is up to 15%.



قيم البحث

اقرأ أيضاً

The observed radii distribution of {it Kepler} exoplanets reveals two distinct populations: those that are more likely to be terrestrials ($lesssim1.7R_oplus$) and those that are more likely to be gas-enveloped ($gtrsim2R_oplus$). There exists a clea r gap in the distribution of radii that separates these two kinds of planets. Mass loss processes like photoevaporation by high energy photons from the host star have been proposed as natural mechanisms to carve out this radius valley. These models favor underlying core mass function of sub-Neptunes that is sharply peaked at $sim$4--8$M_oplus$ but the radial-velocity follow-up of these small planets hint at a more bottom-heavy mass function. By taking into account the initial gas accretion in gas-poor (but not gas-empty) nebula, we demonstrate that 1) the observed radius valley is a robust feature that is initially carved out at formation during late-time gas accretion; and 2) that it can be reconciled with core mass functions that are broad extending well into sub-Earth regime. The maximally cooled isothermal limit prohibits cores lighter than $sim$1--2$M_oplus$ from accreting enough mass to appear gas-enveloped. The rocky-to-enveloped transition established at formation produces a gap in the radius distribution that shifts to smaller radii farther from the star, similar to that observed. For the best agreement with the data, our late-time gas accretion model favors dust-free accretion in hotter disks with cores slightly less dense than the Earth ($sim$0.8$rho_oplus$) drawn from a mass function that is as broad as $dN/dM_{rm core} propto M_{rm core}^{-0.7}$.
Planets with 2 $R_{oplus}$ < $R$ < 3 $R_{oplus}$ and orbital period $<$100 d are abundant; these sub-Neptune exoplanets are not well understood. For example, $Kepler$ sub-Neptunes are likely to have deep magma oceans in contact with their atmospheres , but little is known about the effect of the magma on the atmosphere. Here we study this effect using a basic model, assuming that volatiles equilibrate with magma at $T$ $sim$ 3000 K. For our Fe-Mg-Si-O-H model system, we find that chemical reactions between the magma and the atmosphere and dissolution of volatiles into the magma are both important. Thus, magma matters. For H, most moles go into the magma, so the mass target for both H$_2$ accretion and H$_2$ loss models is weightier than is usually assumed. The known span of magma oxidation states can produce sub-Neptunes that have identical radius but with total volatile masses varying by 20-fold. Thus, planet radius is a proxy for atmospheric composition but not for total volatile content. This redox diversity degeneracy can be broken by measurements of atmosphere mean molecular weight. We emphasise H$_2$ supply by nebula gas, but also consider solid-derived H$_2$O. We find that adding H$_2$O to Fe probably cannot make enough H$_2$ to explain sub-Neptune radii because $>$10$^3$-km thick outgassed atmospheres have high mean molecular weight. The hypothesis of magma-atmosphere equilibration links observables such as atmosphere H$_2$O/H$_2$ ratio to magma FeO content and planet formation processes. Our models accuracy is limited by the lack of experiments (lab and/or numerical) that are specific to sub-Neptunes; we advocate for such experiments.
Transiting planets with radii 2-3 $R_bigoplus$ are much more numerous than larger planets. We propose that this drop-off is so abrupt because at $R$ $sim$ 3 $R_bigoplus$, base-of-atmosphere pressure is high enough for the atmosphere to readily dissol ve into magma, and this sequestration acts as a strong brake on further growth. The viability of this idea is demonstrated using a simple model. Our results support extensive magma-atmosphere equilibration on sub-Neptunes, with numerous implications for sub-Neptune formation and atmospheric chemistry.
We report the discovery of a planetary system orbiting TOI-763 (aka CD-39 7945), a $V=10.2$, high proper motion G-type dwarf star that was photometrically monitored by the TESS space mission in Sector 10. We obtain and model the stellar spectrum and find an object slightly smaller than the Sun, and somewhat older, but with a similar metallicity. Two planet candidates were found in the light curve to be transiting the star. Combining TESS transit photometry with HARPS high-precision radial velocity follow-up measurements confirm the planetary nature of these transit signals. We determine masses, radii, and bulk densities of these two planets. A third planet candidate was discovered serendipitously in the radial velocity data. The inner transiting planet,TOI-763 b, has an orbital period of $P_mathrm{b}$ = 5.6~days, a mass of $M_mathrm{b}$ = $9.8pm0.8$ $M_oplus$, and a radius of $R_mathrm{b}$ = $2.37pm0.10$ $R_oplus$. The second transiting planet,TOI-763 c, has an orbital period of $P_mathrm{c}$ = 12.3~days, a mass of $M_mathrm{c}$ = $9.3pm1.0$ $M_oplus$, and a radius of $R_mathrm{c}$ = $2.87pm0.11$ $R_oplus$. We find the outermost planet candidate to orbit the star with a period of $sim$48~days. If confirmed as a planet it would have a minimum mass of $M_mathrm{d}$ = $9.5pm1.6$ $M_oplus$. We investigated the TESS light curve in order to search for a mono transit by planet~d without success. We discuss the importance and implications of this planetary system in terms of the geometrical arrangements of planets orbiting G-type stars.
We report the Transiting Exoplanet Survey Satellite ($TESS$) detection of a multi-planet system orbiting the $V=10.9$ K0 dwarf TOI 125. We find evidence for up to five planets, with varying confidence. Three high signal-to-noise transit signals corre spond to sub-Neptune-sized planets ($2.76$, $2.79$, and $2.94 R_{oplus}$), and we statistically validate the planetary nature of the two inner planets ($P_b = 4.65$ days, $P_c = 9.15$ days). With only two transits observed, we report the outer object ($P_{.03} = 19.98$ days) as a high signal-to-noise ratio planet candidate. We also detect a candidate transiting super-Earth ($1.4 R_{oplus}$) with an orbital period of only $12.7$ hours and a candidate Neptune-sized planet ($4.2 R_{oplus}$) with a period of $13.28$ days, both at low signal-to-noise. This system is amenable to mass determination via radial velocities and transit timing variations, and provides an opportunity to study planets of similar size while controlling for age and environment. The ratio of orbital periods between TOI 125 b and c ($P_c/P_b = 1.97$) is slightly smaller than an exact 2:1 commensurability and is atypical of multiple planet systems from $Kepler$, which show a preference for period ratios just $wide$ of first-order period ratios. A dynamical analysis refines the allowed parameter space through stability arguments and suggests that, despite the nearly commensurate periods, the system is unlikely to be in resonance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا