ﻻ يوجد ملخص باللغة العربية
Sub-Neptune planets are a very common type of planets. They are inferred to harbour a primordial (H/He) envelope, on top of a (rocky) core, which dominates the mass. Here, we investigate the long-term consequences of the core properties on the planet mass-radius relation. We consider the role of various core energy sources resulting from core formation, its differentiation, its solidification (latent heat), core contraction and radioactive decay. We divide the evolution of the rocky core into three phases: the formation phase, which sets the initial conditions, the magma ocean phase, characterized by rapid heat transport, and the solid state phase, where cooling is inefficient. We find that for typical sub-Neptune planets of ~2-10 Earth masses and envelope mass fractions of 0.5-10% the magma ocean phase lasts several Gyrs, much longer than for terrestrial planets. The magma ocean phase effectively erases any signs of the initial core thermodynamic state. After solidification, the reduced heat flux from the rocky core causes a significant drop in the rocky core surface temperature, but its effect on the planet radius is limited. In the long run, radioactive heating is the most significant core energy source in our model. Overall, the long term radius uncertainty by core thermal effects is up to 15%.
The observed radii distribution of {it Kepler} exoplanets reveals two distinct populations: those that are more likely to be terrestrials ($lesssim1.7R_oplus$) and those that are more likely to be gas-enveloped ($gtrsim2R_oplus$). There exists a clea
Planets with 2 $R_{oplus}$ < $R$ < 3 $R_{oplus}$ and orbital period $<$100 d are abundant; these sub-Neptune exoplanets are not well understood. For example, $Kepler$ sub-Neptunes are likely to have deep magma oceans in contact with their atmospheres
Transiting planets with radii 2-3 $R_bigoplus$ are much more numerous than larger planets. We propose that this drop-off is so abrupt because at $R$ $sim$ 3 $R_bigoplus$, base-of-atmosphere pressure is high enough for the atmosphere to readily dissol
We report the discovery of a planetary system orbiting TOI-763 (aka CD-39 7945), a $V=10.2$, high proper motion G-type dwarf star that was photometrically monitored by the TESS space mission in Sector 10. We obtain and model the stellar spectrum and
We report the Transiting Exoplanet Survey Satellite ($TESS$) detection of a multi-planet system orbiting the $V=10.9$ K0 dwarf TOI 125. We find evidence for up to five planets, with varying confidence. Three high signal-to-noise transit signals corre