ﻻ يوجد ملخص باللغة العربية
Magnetic helices and skyrmions in noncentrosymmetric magnets are representative examples of chiral spin textures in solids. Their spin swirling direction, often termed as the magnetic helicity and defined as either left-handed or right-handed, is uniquely determined by the Dzyaloshinskii-Moriya interaction (DMI) in fixed chirality host crystals. Thus far, there have been relatively few investigations of the DMI in metallic magnets as compared with insulating counterparts. Here, we focus on the metallic magnets Co$_{8-x}$Fe$_x$Zn$_8$Mn$_4$ (0 $leq$ $x$ $leq$ 4.5) with a $beta$-Mn-type chiral structure and find that as $x$ varies under a fixed crystal chirality, a reversal of magnetic helicity occurs at $x_mathrm{c}$ $sim$ 2.7. This experimental result is supported by a theory based on first-principles electronic structure calculations, demonstrating the DMI to depend critically on the electron band filling. Thus by composition tuning our work shows the sign change of the DMI with respect to a fixed crystal chirality to be a universal feature of metallic chiral magnets.
When an electron moves in a smoothly varying non-collinear magnetic structure, its spin-orientation adapts constantly, thereby inducing forces that act on both the magnetic structure and the electron. These forces may be described by electric and mag
Skyrmions, topologically-protected nanometric spin vortices, are being investigated extensively in various magnets. Among them, many of structurally-chiral cubic magnets host the triangular-lattice skyrmion crystal (SkX) as the thermodynamic equilibr
We report the direct evidence of field-dependent character of the interaction between individual magnetic skyrmions as well as between skyrmions and edges in B20-type FeGe nanostripes observed by means of high resolution Lorentz transmission electron
Magnetic skyrmions are vortex-like topological spin textures often observed in structurally chiral magnets with Dzyaloshinskii-Moriya interaction. Among them, Co-Zn-Mn alloys with a $beta$-Mn-type chiral structure host skyrmions above room temperatur
The skyrmions generated by frustration in centrosymmetric structures host extra internal degrees of freedom: vorticity and helicity, resulting in distinctive properties and potential functionality, which are not shared by the skyrmions stemming from