ترغب بنشر مسار تعليمي؟ اضغط هنا

Steve: A hierarchical Bayesian model for Supernova Cosmology

54   0   0.0 ( 0 )
 نشر من قبل Samuel Hinton
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new Bayesian hierarchical model (BHM) named Steve for performing type Ia supernova (SNIa) cosmology fits. This advances previous works by including an improved treatment of Malmquist bias, accounting for additional sources of systematic uncertainty, and increasing numerical efficiency. Given light curve fit parameters, redshifts, and host-galaxy masses, we fit Steve simultaneously for parameters describing cosmology, SNIa populations, and systematic uncertainties. Selection effects are characterised using Monte-Carlo simulations. We demonstrate its implementation by fitting realisations of SNIa datasets where the SNIa model closely follows that used in Steve. Next, we validate on more realistic SNANA simulations of SNIa samples from the Dark Energy Survey and low-redshift surveys. These simulated datasets contain more than $60,000$ SNeIa, which we use to evaluate biases in the recovery of cosmological parameters, specifically the equation-of-state of dark energy, $w$. This is the most rigorous test of a BHM method applied to SNIa cosmology fitting, and reveals small $w$-biases that depend on the simulated SNIa properties, in particular the intrinsic SNIa scatter model. This $w$-bias is less than $0.03$ on average, less than half the statistical uncertainty on $w$.These simulation test results are a concern for BHM cosmology fitting applications on large upcoming surveys, and therefore future development will focus on minimising the sensitivity of Steve to the SNIa intrinsic scatter model.

قيم البحث

اقرأ أيضاً

Measurements of the equation of state of dark energy from surveys of thousands of Type Ia Supernovae (SNe Ia) will be limited by spectroscopic follow-up and must therefore rely on photometric identification, increasing the chance that the sample is c ontaminated by Core Collapse Supernovae (CC SNe). Bayesian methods for supernova cosmology can remove contamination bias while maintaining high statistical precision but are sensitive to the choice of parameterization of the contaminating distance distribution. We use simulations to investigate the form of the contaminating distribution and its dependence on the absolute magnitudes, light curve shapes, colors, extinction, and redshifts of core collapse supernovae. We find that the CC luminosity function dominates the distance distribution function, but its shape is increasingly distorted as the redshift increases and more CC SNe fall below the survey magnitude limit. The shapes and colors of the CC light curves generally shift the distance distribution, and their effect on the CC distances is correlated. We compare the simulated distances to the first year results of the SDSS-II SN survey and find that the SDSS distance distributions can be reproduced with simulated CC SNe that are ~1 mag fainter than the standard Richardson et al. (2002) luminosity functions, which do not produce a good fit. To exploit the full power of the Bayesian parameter estimation method, parameterization of the contaminating distribution should be guided by the current knowledge of the CC luminosity functions, coupled with the effects of the survey selection and magnitude-limit, and allow for systematic shifts caused by the parameters of the distance fit.
Conventional Type Ia supernova (SN Ia) cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effect s, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of a intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude ($M_B$ vs. $B-V$) slope $beta_{int}$ differs from the host galaxy dust law $R_B$, this convolution results in a specific curve of mean extinguished absolute magnitude vs. apparent color. The derivative of this curve smoothly transitions from $beta_{int}$ in the blue tail to $R_B$ in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope $beta_{app}$ between $beta_{int}$ and $R_B$. We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a dataset of SALT2 optical light curve fits of 248 nearby SN Ia at z < 0.10. The conventional linear fit obtains $beta_{app} approx 3$. Our model finds a $beta_{int} = 2.3 pm 0.3$ and a distinct dust law of $R_B = 3.8 pm 0.3$, consistent with the average for Milky Way dust, while correcting a systematic distance bias of $sim 0.10$ mag in the tails of the apparent color distribution. Finally, we extend our model to examine the SN Ia luminosity-host mass dependence in terms of intrinsic and dust components.
We use Bayesian model selection techniques to test extensions of the standard flat LambdaCDM paradigm. Dark-energy and curvature scenarios, and primordial perturbation models are considered. To that end, we calculate the Bayesian evidence in favour o f each model using Population Monte Carlo (PMC), a new adaptive sampling technique which was recently applied in a cosmological context. The Bayesian evidence is immediately available from the PMC sample used for parameter estimation without further computational effort, and it comes with an associated error evaluation. Besides, it provides an unbiased estimator of the evidence after any fixed number of iterations and it is naturally parallelizable, in contrast with MCMC and nested sampling methods. By comparison with analytical predictions for simulated data, we show that our results obtained with PMC are reliable and robust. The variability in the evidence evaluation and the stability for various cases are estimated both from simulations and from data. For the cases we consider, the log-evidence is calculated with a precision of better than 0.08. Using a combined set of recent CMB, SNIa and BAO data, we find inconclusive evidence between flat LambdaCDM and simple dark-energy models. A curved Universe is moderately to strongly disfavoured with respect to a flat cosmology. Using physically well-motivated priors within the slow-roll approximation of inflation, we find a weak preference for a running spectral index. A Harrison-Zeldovich spectrum is weakly disfavoured. With the current data, tensor modes are not detected; the large prior volume on the tensor-to-scalar ratio r results in moderate evidence in favour of r=0. [Abridged]
We present a comprehensive statistical analysis of the properties of Type Ia SN light curves in the near infrared using recent data from PAIRITEL and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction and intrinsic variations, for coherent statistical inference. SN Ia light curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR dataset. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient MCMC algorithm exploiting the conditional structure using Gibbs sampling. We apply this framework to the JHK_s SN Ia light curve data. A new light curve model captures the observed J-band light curve shape variations. The intrinsic variances in peak absolute magnitudes are: sigma(M_J) = 0.17 +/- 0.03, sigma(M_H) = 0.11 +/- 0.03, and sigma(M_Ks) = 0.19 +/- 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SN at cz > 2000 km/s is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light curve inference tests the sensitivity of the model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.
We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter halos and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy color. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a $0.1$ dex accuracy, and the intrinsic scatter in halo mass with a $0.05$ dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with $log{M_*} > 11$, which have low satellite fractions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا