ﻻ يوجد ملخص باللغة العربية
We present first-principles many-body perturbation theory calculations of the quasiparticle electronic structure and of the optical response of HfO$_2$ polymorphs. We use the $GW$ approximation including core electrons by the projector augmented wave (PAW) method and performing a quasiparticle self-consistency also on wavefunctions (QS$GW$). In addition, we solve the Bethe-Salpeter equation on top of $GW$ to calculate optical properties including excitonic effects. For monoclinic HfO$_2$ we find a fundamental band gap of $E_g = 6.33$ eV (with the direct band gap at $E_g^d = 6.41$ eV), and an exciton binding energy of 0.57 eV, which situates the optical gap at $E^o_g = 5.85$ eV. The latter is in the range of spectroscopic ellipsometry (SE) experimental estimates (5.5-6 eV), whereas our electronic band gap is well beyond experimental photoemission (PE) estimates ($< 6$ eV) and previous $GW$ works. Our calculated density of states and optical absorption spectra compare well to raw PE and SE spectra. This suggests that our predictions of both optical and electronic gaps are close to, or at least lower bounds of, the real values.
In the development of highly efficient photovoltaic cells, solid perovskite systems have demonstrated unprecedented promise, with the figure of merit exceeding nineteen percent of efficiency. In this paper, we investigate the optical and vibrational
The Bethe-Salpeter equation (BSE) based on GW quasiparticle levels is a successful approach for calculating the optical gaps and spectra of solids and also for predicting the neutral excitations of small molecules. We here present an all-electron imp
We present a systematic investigation of the role and importance of excitonic effects on the optical properties of transitions metal oxide perovskites. A representative set of fourteen compounds has been selected, including 3$d$ (SrTiO$_3$, LaScO$_3$
We present a hybrid approach for GW/Bethe-Salpeter Equation (BSE) calculations of core excitation spectra, including x-ray absorption (XAS), electron energy loss spectra (EELS), and non-resonant inelastic x-ray scattering (NRIXS). The method is based
We present a method to compute optical spectra and exciton binding energies of molecules and solids based on the solution of the Bethe-Salpeter equation (BSE) and the calculation of the screened Coulomb interaction in finite field. The method does no