ﻻ يوجد ملخص باللغة العربية
We discuss a generalization of the Pauli-Gursey transformation, which is motivated by the Autonne-Takagi factorization, to an arbitrary $n$ number of generations of neutrinos using $U(2n)$ that defines general canonical transformations and diagonalizes symmetric complex Majorana mass matrices in special cases. The Pauli-Gursey transformation mixes particles and antiparticles and thus changes the definition of the vacuum and C. We define C, P and CP symmetries at each Pauli frame specified by a generalized Pauli-Gursey transformation. The Majorana neutrinos in the C and P violating seesaw model are then naturally defined by a suitable choice of the Pauli frame, where only Dirac-type fermions appear with well-defined C, P and CP, and thus the C symmetry for Majorana neutrinos agrees with the C symmetry for Dirac-type fermions. This fully symmetric setting corresponds to the idea of Majorana neutrinos as Bogoliubov quasi-particles. In contrast, the conventional direct construction of Majorana neutrinos in the seesaw model, where CP is well-defined but C and P are violated, encounters the mismatch of C symmetry for Majorana neutrinos and C symmetry for chiral fermions; this mismatch is recognized as the inevitable appearance of the singlet (trivial) representation of C symmetry for chiral fermions.
The parity transformation law of the fermion field $psi(x)$ is usually defined by the $gamma^{0}$-parity $psi^{p}(t,-vec{x}) = gamma^{0}psi(t,-vec{x})$ with eigenvalues $pm 1$, while the $igamma^{0}$-parity $psi^{p}(t,-vec{x})=igamma^{0}psi(t,-vec{x}
The Majorana neutrino $psi_{M}(x)$ when constructed as a superposition of chiral fermions such as $ u_{L} + Coverline{ u_{L}}^{T}$ is characterized by $ ({cal C}{cal P}) psi_{M}(x)({cal C}{cal P})^{dagger} =igamma^{0}psi_{M}(t,-vec{x})$, and the CP s
The texture zero mass matrices for the leptons and the seesaw mechanism are used to derive relations between the matrix elements of the lepton mixing matrix and the ratios of the neutrino masses.
We propose a new mechanism producing a non-vanishing lepton number asymmetry, based on decays of heavy Majorana neutrinos. If they are produced out of equilibrium, as occurs in preheating scenario, and are superpositions of mass eigenstates rapidly d
In this paper we reply to the comment presented in [1]. In that work the author raises several points about the geometric phase for neutrinos discussed in [2]. He affirms that the calculation is flawed due to incorrect application of the definition o