ﻻ يوجد ملخص باللغة العربية
For semiconductors used in photovoltaic devices, the effective mass approximation allows calculation of important material properties from first-principles calculations, including optical properties (e.g. exciton binding energies), defect properties (e.g. donor and acceptor levels) and transport properties (e.g. carrier mobilities). The conduction and valence bands of semiconductors are commonly approximated as parabolic around their extrema, which gives a simple theoretical description, but ignores the complexity of real materials. In this work, we use density functional theory to assess the impact of band non-parabolicity on four common thin-film photovoltaic materials - GaAs, CdTe, Cu$_2$ZnSnS$_4$ and CH$_3$NH$_3$PbI$_3$ - at temperatures and carrier densities relevant for real-world applications. First, we calculate the effective mass at the band edges. We compare finite-difference, unweighted least-squares and thermally weighted least-squares approaches. We find that the thermally weighted least-squares method reduces sensitivity to the choice of sampling density. Second, we employ a Kane quasi-linear dispersion to quantify the extent of non-parabolicity, and compare results from different electronic structure theories to consider the effect of spin-orbit coupling and electron exchange. Finally, we focus on the halide perovskite CH$_3$NH$_3$PbI$_3$ as a model system to assess the impact of non-parabolicity on calculated electron transport and optical properties at high carrier concentrations. We find that at a concentration of 10$^{20}$ cm$^-3$ the optical effective mass increases by a factor of two relative to the low carrier-concentration value, and the polaron mobility decreases by a factor of three. Our work suggests that similar adjustments should be made to the predicted optical and transport properties of other semiconductors with significant band non-parabolicity.
Intrinsic and extrinsic disorder from lattice imperfections, substrate and environment has a strong effect on the local electronic structure and hence the optical properties of atomically thin transition metal dichalcogenides that are determined by s
We demonstrate that cation-related localized states strongly perturb the band structure of $text{Al}_{1-x}text{In}_x$N leading to a strong band gap bowing at low In content. Our first-principles calculations show that In-related localized states are
We study the electronic structures and dielectric functions of the simple hydrides LiH, NaH, MgH2 and AlH3, and the complex hydrides Li3AlH6, Na3AlH6, LiAlH4, NaAlH4 and Mg(AlH4)2, using first principles density functional theory and GW calculations.
Magnetoelectric multiferroic composite of two types of multiferroic (Type I and II) consisting BiFeO3 and TbMnO3 is studied for enhanced magnetic and transport properties. A narrower band gap is estimated from the UV-visible absorption spectrum from
In the framework of four-band envelope-function formalism, developed earlier for spherical semiconductor nanocrystals, we study the electronic structure and optical properties of quantum-confined lead-salt (PbSe and PbS) nanowires (NWs) with a strong