ﻻ يوجد ملخص باللغة العربية
We present Hypersequent Classical Processes (HCP), a revised interpretation of the Proofs as Processes correspondence between linear logic and the {pi}-calculus initially proposed by Abramsky [1994], and later developed by Bellin and Scott [1994], Caires and Pfenning [2010], and Wadler [2014], among others. HCP mends the discrepancies between linear logic and the syntax and observable semantics of parallel composition in the {pi}-calculus, by conservatively extending linear logic to hyperenvironments (collections of environments, inspired by the hypersequents by Avron [1991]). Separation of environments in hyperenvironments is internalised by $otimes$ and corresponds to parallel process behaviour. Thanks to this property, for the first time we are able to extract a labelled transition system (lts) semantics from proof rewritings. Leveraging the information on parallelism at the level of types, we obtain a logical reconstruction of the delayed actions that Merro and Sangiorgi [2004] formulated to model non-blocking I/O in the {pi}-calculus. We define a denotational semantics for processes based on Brzozowski derivatives, and uncover that non-interference in HCP corresponds to Fubinis theorem of double antiderivation. Having an lts allows us to validate HCP using the standard toolbox of behavioural theory. We instantiate bisimilarity and barbed congruence for HCP, and obtain a full abstraction result: bisimilarity, denotational equivalence, and barbed congruence coincide.
This paper provides a fully abstract semantics for value-passing CCS for trees (VCCTS). The operational semantics is given both in terms of a reduction semantics and in terms of a labelled transition semantics. The labelled transition semantics is no
We study the lambda-mu-calculus, extended with explicit substitution, and define a compositional output-based interpretation into a variant of the pi-calculus with pairing that preserves single-step explicit head reduction with respect to weak bisimi
We define a semantics for Milners pi-calculus, with three main novelties. First, it provides a fully-abstract model for fair testing equivalence, whereas previous semantics covered variants of bisimilarity and the may and must testing equivalences. S
We develop a categorical compositional distributional semantics for Lambek Calculus with a Relevant Modality, which has a limited version of the contraction and permutation rules. The categorical part of the semantics is a monoidal biclosed category
We investigate the formal semantics of a simple imperative language that has both classical and quantum constructs. More specifically, we provide an operational semantics, a denotational semantics and two Hoare-style proof systems: an abstract one an