ﻻ يوجد ملخص باللغة العربية
As quantum optical phenomena are based on Maxwells equations, and it is becoming important to understand quantum optical phenomena at short distances, so it is important to analyze quantum optics using short distance corrected Maxwells equation. Maxwells action can be obtained from quantum electrodynamics using the framework of effective field theory, and so the leading order short distance corrections to Maxwells action can also be obtained from the derivative expansion of the same effective field theory. Such short distance corrections will be universal for all quantum optical systems, and they will effect all short distance quantum optical phenomena. In this paper, we will analyze the form of such corrections, and demonstrate the standard formalism of quantum optics can still be used (with suitable modifications), to analyze quantum optical phenomena from this short distance corrected Maxwells actions.
We review recent advances towards the realization of quantum networks based on atom-like solid-state quantum emitters coupled to nanophotonic devices. Specifically, we focus on experiments involving the negatively charged silicon-vacancy color center
A general formalism is given in quantum optics within a ring cavity, in which a non-linear material is stored. The method is Feynman graphical one, expressing the transition amplitude or S-matrix in terms of propagators and vertices. The propagator i
Quantum optics is the study of the intrinsically quantum properties of light. During the second part of the 20th century experimental and theoretical progress developed together; nowadays quantum optics provides a testbed of many fundamental aspects
We present a detailed analysis of strongly driven spontaneous four-wave mixing in a lossy integrated microring resonator side-coupled to a channel waveguide. A nonperturbative, analytic solution within the undepleted pump approximation is developed f
Ultra-short pulses propagating in nonlinear nanophotonic waveguides can simultaneously leverage both temporal and spatial field confinement, promising a route towards single-photon nonlinearities in an all-photonic platform. In this multimode quantum