ترغب بنشر مسار تعليمي؟ اضغط هنا

Femtosecond Covariance Spectroscopy

52   0   0.0 ( 0 )
 نشر من قبل Giorgia Sparapassi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The success of non-linear optics relies largely on pulse-to-pulse consistency. In contrast, covariance based techniques used in photoionization electron spectroscopy and mass spectrometry have shown that wealth of information can be extracted from noise that is lost when averaging multiple measurements. Here, we apply covariance based detection to nonlinear optical spectroscopy, and show that noise in a femtosecond laser is not necessarily a liability to be mitigated, but can act as a unique and powerful asset. As a proof of principle we apply this approach to the process of stimulated Raman scattering in alpha-quartz. Our results demonstrate how nonlinear processes in the sample can encode correlations between the spectral components of ultrashort pulses with uncorrelated stochastic fluctuations. This in turn provides richer information compared to the standard non-linear optics techniques that are based on averages over many repetitions with well-behaved laser pulses. These proof-of-principle results suggest that covariance based nonlinear spectroscopy will improve the applicability of fs non-linear spectroscopy in wavelength ranges where stable, transform limited pulses are not available such as, for example, x-ray free electron lasers which naturally have spectrally noisy pulses ideally suited for this approach.



قيم البحث

اقرأ أيضاً

Excited-state vibrations are crucial for determining photophysical and photochemical properties of molecular compounds. Stimulated Raman scattering can coherently stimulate and probe molecular vibrations with optical pulses, but it is generally restr icted to ground state properties. Working in resonance conditions, indeed, enables cross-section enhancement and selective excitation to a targeted electronic level, but is hampered by an increased signal complexity due to the presence of overlapping spectral contributions. Here, we show how detailed information on ground and excited state vibrations can be disentangled, by exploiting the relative time delay between Raman and probe pulses to control the excited state population, combined with a diagrammatic formalism to dissect the pathways concurring to the signal generation. The proposed method is then exploited to elucidate the vibrational properties of ground and excited electronic states in the paradigmatic case of Cresyl Violet. We anticipate that the presented approach holds the potential for selective mapping the reaction coordinates pertaining to transient electronic stages implied in photo-active compounds.
Spectral compression of femtosecond pulses by second harmonic generation in the presence of substantial group velocity dispersion provides a convenient source of narrowband Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS). We di scuss here a simple and efficient modification that dramatically increases the versatility of the second harmonic spectral compression technique. Adding a spectral filter following second harmonic generation produces narrowband pulses with a superior temporal profile. This simple modification i) increases the Raman gain for a given pulse energy, ii) improves the spectral resolution, iii) suppresses coherent oscillations associated with slowly dephasing vibrations, and iv) extends the useful tunable range to at least 330-750 nm.
We present a novel spectroscopic technique for second harmonic generation (SHG) using femtosecond laser pulses at 30~kHz repetition rate, which nevertheless provides high spectral resolution limited only by the spectrometer. The potential of this met hod is demonstrated by applying it to the yellow exciton series of Cu$_2$O. Besides even parity states with $S-$ and $D-$ envelope, we also observe odd parity, $P-$ excitons with linewidths down to 100 $mu$eV, despite of the broad excitation laser spectrum with a full width at half maximum of 14~meV. The underlying light-matter interaction mechanisms of SHG are elaborated by a group theoretical analysis which allows us to determine the linear and circular polarization dependences, in good agreement with experiment.
We demonstrate a novel method to measure the temporal evolution of electric fields with optical frequencies. Our technique is based on the detection of transient currents in air plasma. These directional currents result from sub-cycle ionization of a ir with a short pump pulse, and the steering of the released electrons with the pulse to be sampled. We assess the validity of our approach by comparing it with different state-of-the-art laser-pulse characterization techniques. Notably, our method works in ambient air and facilitates a direct measurement of the field waveform, which can be viewed in real time on an oscilloscope in the exact same way as a radio frequency signal.
We present a technique that uses noisy broadband pulse bursts generated by modulational instability to probe nonlinear processes, including infrared-inactive Raman transitions, in molecular gases. These processes imprint correlations between differen t regions of the noisy spectrum, which can be detected by acquiring single shot spectra and calculating the Pearson correlation coefficient between the different frequency components. Numerical simulations verify the experimental measurements and are used to further understand the system and discuss methods to improve the signal strength and the spectral resolution of the technique.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا